Understanding the Linux Graphics Stack training

Understanding the Linux Graphics

Stack training bootl I'n

© Copyright 2004-2024, Bootlin
Creative Commons BY-SA 3.0 license.
Latest update: October 26, 2024.

Document updates and training details
https://bootlin. con/training/graphics

Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering

Send them to feedback@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/212

https://bootlin.com/training/graphics
mailto:feedback@bootlin.com

ao Understanding the Linux Graphics Stack training

o%e]

These slides are the training materials for Bootlin's
Understanding the Linux Graphics Stack training course.
If you are interested in following this course with an experienced
Bootlin trainer, we offer:
Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.
Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.
Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

Details and registrations:
https://bootlin.com/training/graphics

Contact: training@bootlin.com

G
229

Icon by Eucalyp, Flaticon

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

2/212

https://bootlin.com/training/graphics

About Bootlin

bootlin

About Bootlin

© Copyright 2004-2024, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/212

a Bootlin introduction
o)
Engineering company
In business since 2004
Before 2018: Free Electrons
Team based in France and ltaly

Serving customers worldwide
Highly focused and recognized expertise
Embedded Linux
Linux kernel
Embedded Linux build systems
Strong open-source contributor
Activities
Engineering services
Training courses

https://bootlin.com

bootlin

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/212

https://bootlin.com

a Bootlin engineering services
o)

o%e]

Bootloader / Linux kernel
firmware porting and
development driver

U-Boot, Barebox, development

OP-TEE, TF-A, .../

Embedded Linux

Embgdded Linux integration
build systems

Boot time, real-time,

Yocto, OpenEmbedded, security, multimedia,

Buildroot, ... networking

Linux BSP
development,
maintenance
and upgrade

Open-source
upstreaming

Get code integrated
in upstream
Linux, U-Boot, Yocto,
Buildroot, ...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/212

Bootlin training courses

Embedded Linux Linux kernel Yocto Project Buildroot
system driver system system
development development development development
On-site: 4 or 5 days On-site: 5 days On-site: 3 days On-site: 3 days
Online: 7 * 4 hours Online: 7 * 4 hours Online: 4 * 4 hours Online: 5 * 4 hours
Understandin . Real-Time Linux Linux debugging,
) 9 Embedded Linux . . 99Ing
the Linux audio with tracing, profiling
graphics stack PREEMPT_RT and performance
analysis
On-site: 2 days On-site: 2 days On-site: 2 days On-site: 3 days
Online: 4 * 4 hours Online: 4 * 4 hours Online: 3 * 4 hours Online: 4 * 4 hours

All our training materials are freely available
under a free documentation license (CC-BY-SA 3.0)
See https://bootlin.com/training/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 6/212

a@ Bootlin, an open-source contributor
od

o%e]

Strong contributor to the Linux kernel
In the top 30 of companies contributing to Linux worldwide
Contributions in most areas related to hardware support
Several engineers maintainers of subsystems/platforms
9000 patches contributed
https://bootlin.com/community/contributions/kernel-contributions/
Contributor to Yocto Project
Maintainer of the official documentation
Core participant to the QA effort
Contributor to Buildroot
Co-maintainer
6000 patches contributed
Significant contributions to U-Boot, OP-TEE, Barebox, etc.

Fully open-source training materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/212

https://bootlin.com/community/contributions/kernel-contributions/

a Bootlin on-line resources
o)

o%e]

Website with a technical blog:
https://bootlin.com

Engineering services:
https://bootlin.com/engineering
Training services: W
https://bootlin.com/training

Twitter:

https://twitter.com/bootlincom

LinkedIn:
https://www.linkedin.com/company/bootlin

Icon by Freepik, Flaticon

Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/212

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

a Training quiz and certificate
b

o%e]

You have been given a quiz to test your knowledge on the topics covered by the
course. That's not too late to take it if you haven't done it yet!

At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

It allows Bootlin to assess your progress thanks to the course. That's also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/212

Participate!
9o

o%e]

During the lectures...
Don't hesitate to ask questions. Other people in the audience may have similar
questions too.
Don't hesitate to share your experience too, for example to compare Linux with
other operating systems you know.
Your point of view is most valuable, because it can be similar to your colleagues’
and different from the trainer's.
In on-line sessions

Please always keep your camera on!
Also make sure your name is properly filled.
You can also use the "Raise your hand” button when you wish to ask a question but

don't want to interrupt.
All this helps the trainer to engage with participants, see when something needs
clarifying and make the session more interactive, enjoyable and useful for everyone.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/212

Collaborate!
o

o
@ ¢ embedded-inuc-nov2020

QD -

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
Use the dedicated Matrix channel for this session to add
questions.
If your session offers practical labs, you can also report issues,
share screenshots and command output there.
Don't hesitate to share your own answers and to help others
especially when the trainer is unavailable.

The Matrix channel is also a good place to ask questions outside
of training hours, and after the course is over.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/212

a@ Base Theory and Concepts About Graphics

o%e]

Base Theory and

Concepts About bOOtI IN

Graphics

OO\«

© C ight 2004-2024, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/212

a@ Base Theory and Concepts About Graphics

g

Image and Color Representation

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/212

%Light, pixels and pictures

> Pictures are representations of light emissions
> Analog representations are spatially continuous:
¢ With an infinite number of elements
® Example: photosensitive paper
> Digital representations are spatially quantified:
® With a finite number of elements
¢ Example: discrete LED-based display
> Producing a digital representation is called quantization

® Reduction of information from the continuous world

¢ Quantization requires a base element unit or quantum
® This quantum is called picture element or pixel

® Quantization is also called sampling in this context

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

14/212

a@ Light, pixels and pictures

o%e]

Pictures are bi-dimensional ordered ensembles of pixels (also called frames):
Frames have dimensions: width (horizontal) and height (vertical)
The aspect ratio is the width:height ratio (e.g. 16:9, 4:3)
Pixels are located with a position: (x,y)
The dimension and position unit is the number of pixels
Quantified pixels have a spatial density or spatial resolution:
How many pixels are found in n inches?
The usual pixel resolution unit is the dot per inch (DPI)
Vertical and horizontal spatial densities are usually not distinguished
pixels are assumed to have a square shape most of the time

15/212

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

60 Light, pixels and pictures (illustrated)

o%e]

View from the Window at Le Gras picture A monochrome dot-matrix display

Analog representation, Digital representation,
on a metal plate on a LED display

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/212

a Sampling and frequency domain
o)
Pixels are quantized/sampled representations of a spatial domain

The initial (continuous) domain has a corresponding frequency spectrum
high frequencies provide details in pictures

A 2D Fourier transform translates from spatial (x, y) to frequency (u, v) domain

+o00 400 .
Flu,v) = / / f(x, y)e 24 w) ddy

The transform decomposes the domain in periodic patterns
Adapted for discrete signals as Discrete Fourier Transform
Implemented with optimized algorithms as Fast Fourier Transform (FFT)

Frequency domain analysis is very useful for signal processing
used at the roots of image compression

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/212

Sampling and frequency domain (illustrated)

A wall of bricks represented in the spatial The wall of bricks represented in the

domain frequency domain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/212

60 Sampling and frequency domain (illustrated)

Jo3e!

A wall of bricks rotated 45° represented in The wall of bricks rotated 45° represented
the spatial domain in the frequency domain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/212

ao Sampling and aliasing

o%e]

The spatial domain is quantized with a bi-dimensional sampling resolution
Matching sampling frequencies exist, for each axis: (us, vs)
They limit the frequencies that can be sampled from the initial domain

The Shannon-Nyquist theorem provides a sufficient condition for (us, vs):
Us > 2 X Umax, Vs > 2 X Vmax

Frequencies such that u > % and v > % are not correctly sampled

Can result in incorrect frequencies being introduced: Moiré pattern in 2D

Aliasing example in a uni-dimensional domain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/212

%Sampling and aliasing (illustrated)

Another wall of bricks Moiré on the bricks Moiré on the garage door

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/212

Q}Light and color representation

> Light itself must be quantized in digital representations
distinct from and unrelated to spatial quantization
> Perceived as colors based on the Human visual system

® Perception based on trichromacy (red, green, blue)

® Not necessarily a unique frequency of the spectrum
e.g. pink is not a color of the visible spectrum

» Translating light information (colors) to numbers:

® A color model defines a base of color components
typically 3 components (e.g. red, green, blue)

® A colorspace is a precise translation referential
unique association of a color and coordinates in the base

® The color gamut is the range of colors in the colorspace
not every color can be represented in every colorspace

46
01 02 03 04 05 06 07 08
x

Color gamut of a
given colorspace

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

22/212

ao Color quantization approaches
o0

o%e]

Different approaches exist for color quantization:
Uniform quantization in the color range (most common)
values are attributed to colors with a regular step (resolution)
Irregular quantization with indexed colors (palettes)
values are attributed to colors as needed

0
%

A\ NANANANAN

W

L7
LSS
NP7

N\

N

Uniform color coordinates are quantized with:

A given resolution: the smallest possible color difference
A given range: the span of representable colors

NN
) NANANANANAN

/4
ALK
AN

{

A given number of bits are used for quantization: bit depth
A trade-off between range and resolution must be defined G=5/5

Increasing the resolution reduces the range
Increasing the range reduces the resolution

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/212

Q}Light representation, color quantization (illustrated)

A pair of Merops feeding

16 million colors (24 bits per pixel) 16 colors (4 bits per pixel)
> high color resolution » medium color resolution

> high color range > low color range

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/212

Q}Light representation, color quantization (illustrated)

g

A pair of Merops feeding
16 million colors (24 bits per pixel) 16 colors (4 bits per pixel)

> low color resolution > low color resolution

> high color range » high color range

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/212

a Colorspaces and channels
o)

Jo3e!

Each component of a color model is called a channel

Examples for usual types of color models:

RGB, with 3 channels:

R (red) / G (green) / B (blue)
HSV, with 3 channels:

H (hue) / S (saturation) / V (value)
YUV or Y/Cb/Cr, with 3 channels:
Y (luminance) / U or Cb / V or Cr (chrominance) HSV diagram

An additional channel can exist for transparency: the alpha channel
mostly relevant for composition, not for final display

Color coordinates can be converted between colorspaces and color models
using translation formulas and associated constants

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/212

%Colorspaces and channels (illustrated with YUV)

Original picture Decomposition in Y, U and V channels
R=Y+1140 x V Y=+40.299 x R+0.587 x G+ 0.114 x B
G=Y—-0.39% x U—-0.581 x V U= —-0.147Tx R—0.289 x G+ 0.436 x B
B=Y+2032x U V=+40.615x R—0.515 x G—0.100 x B

Translation between BT.601 YUV and sRGB colorspaces

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/212

ao Frame size and chroma sub-sampling
o0

o%e]

Digital pictures easily take up a lot of space (more so for videos)
The minimal size for a picture depends on:
Dimensions (width and height)
Number of bits per pixel (bpp): color (and alpha) depth and dead bits
Roughly: width x height x bpp =+ 8 bytes
For 12 Mpixels with 16 Mcolors and alpha: 4000 x 3000 x 32 + 8 = 45.8MiB
The human visual system has specificities:
High sensitivity to luminosity (luminance)
Low sensitivity to colors (chrominance)
The YUV color model offers the relevant channel separation

Sub-sampling can be applied to the chrominance channel
less data (and precision) on colors to reduce size

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/212

%Frame size and chroma sub-sampling
A

» Chrominance samples are used for multiple luminance samples
» With specific vertical and horizontal ratios (usually integer)
> Usually summarized using a three-part ratio: J:a: b

4:4:4
fme I.I. I.I. I.I. I.I. I.I.
+
1 2 3 4 1 2 3 4 2 3 4 1234
2 23 23
Chroma —
2 2 3
H ratio 1:4 1:2 1:1 1:1
V ratio 1:1 1:2 1:1 1:1 1:2

YUV 4:2:0 usual example:

bppy =8, bppy = bppy =8 +2+2 =2
= bpp = bppy + bppy + bppy = 12 bits/ pixel

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

29/212

a Pixel data distribution in memory
o)
Pixel data can be distributed in different ways in memory
Different ways to aggregate color components in data planes (memory chunks):
Packed: Components are stored in the same data plane in memory
Semi-planar (YUV): Luma and chroma are stored in distinct data planes
Planar: Each component has its own data plane in memory
When multiple color components are grouped, bit order must be specified:
Which component comes first in memory?
Affected by endianness when read by hardware!
Scan order must also be specified:
How to calculate the address for position (x, y) and back?
Raster order (most common) specifies: row-major, left-to-right, top-to-bottom

0 w

Raster order

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/212

a@ Pixel formats, FourCC codes

Many meta-data elements are needed to fully describe how a picture is coded
Some describe picture-level attributes (e.g. dimensions)
Some describe pixel-level attributes (e.g. colorspace, bpp)

Pixel-level attributes are grouped as a pixel format that defines:

Color model in use

Number of bits per channel and per pixel (bpp)
Bit attribution and byte order

Per-channel sub-sampling ratios

Pixel data planes distribution in memory

Often represented as a 4-character code called FourCC

Not really standardized and implementation-specific:
DRM in Linux uses XR24 for DRM_FORMAT_XRGB8888.
Not really standardized but widely used in various forms
Scan order is specified separately with a modifier
Assumed to be raster order if unspecified

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/212

https://elixir.bootlin.com/linux/latest/ident/DRM_FORMAT_XRGB8888

a@ Level of detail of quantized pictures
o0

o%e]

Depends on a number of factors, including:
Spatial density (pixel resolution)
Quantized dimensions (picture width and height)
Colorspace limits (chromaticity diagram)
Color depth (number of bits per pixel)

Color resolution and range trade-off

Generally speaking:
Many factors are involved
The major bottleneck is not always obvious

Implementation choices do matter

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

32/212

ao Base Theory and Concepts About Graphics

o%e]

Pixel Drawing

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/212

a Accessing pixel data
o)

o%e]

Information required to access pixel data in memory:
Pixel format (also modifier if not linear/raster order)
Dimensions (and total size)

Pointer to the base buffer address

The size of each line is called stride or pitch
Usually equals: stride = width x bpp = 8
Can contain an extra dead zone at the end
Also needs to be specified explicitly

CPU access is either byte or word-aligned
Good fit for formats with bpp = 32 (very common)
Good fit for formats with bpp =8 x n
Not always easy to manage otherwise

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

34/212

a Iterating over pixel data
o)

Jo3e!

Selected format (slides and demos): XRGB8888

bpp = 32 = 8 x 4, one byte per channel, one memory plane

Pixel data can be access by iterating nested variables:
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
data = base + y * stride + x * 4;

Iterating over all pixels takes numerous CPU-cycles, tips:
Incrementing the address instead of re-calculating it:
data = base;
for (y = 0; y < height; y++)

for (x = 0; x < width; x++)
data += 4;
data += stride - width * 4;
Iterating in y-major is also better for cache hits
Beware: C pointer arithmetic uses type size as unit

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/212

_Gb Concepts about rasterization

> Rasterization is the process of drawing vector shapes as discrete pixels
® Vector shapes are defined with mathematical equations
® Converted from a continuous space domain: R? to a discrete domain

® Results in a discretization/quantization error due to integer rounding
® Also subject to aliasing-related trouble

Continuous source representation Rasterized destination representation

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

36/212

a Rectangle drawing
o)

o%e]

A rectangle is defined with two boundaries per axis:
Xmin < X < Xmax, Ymin < Y < Ymax
Another expression involves a (top-left) start point and size:

Xstart < X < Xstart + Xsizes Ystart < Y < Ystart + Vsize

Allows iterating in the rectangle area only

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

37/212

a Linear gradient drawing
o)

o%e]

Same base as drawing a rectangle

A linear gradient involves interpolation between two colors
Following one of the two axes as major

Involves weighting the two colors depending on the advancement

Equations in x-axis major:

X — Xstart
r= rstart + (rstop - rstart)
Xsize
. X — Xstart
g = gstart + (gstop - gstart)
size
X — Xstart
b= bstart + (bstop - bstart)

Xsize

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/212

Disk i
Qo isk drawing

o%e]

A disk is delimited with a radius test ((0, 0)-centered):

VX2 + y? < radius

Given a center point (xc, y¢):

V(x—=x)2+ (y — yo)? < radius
Requires iterating in:

Xc — radius < x < x¢ + radius, y. — radius < y < y. + radius

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

39/212

a Circular gradient drawing
o)

o%e]

Same base as drawing a disk

Interpolation between two colors using the radius as major:

d= \/(X_ Xc)2 +(y— YC>2

d
r= rsart + (rstop — rstart)m_
d
g = &start + (stop — gstart)raTius
d
b= bstart + (bstop - bstart)?[.us

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/212

Line drawi
Qo ine drawing

o%e]

A line is defined as an affine function:
y(x)=axx+b
Given start and end points, iterating in x-major:

Yend — Ystart
Y(X) = Ystart + (X - Xstart) X—
Xend — Xstart

Xstart < X < Xstop

Axis major depends on the largest per-axis span (axisstop — axiSstart)
Iterating with smaller-span axis-major results in visual holes
Iterating on both axes provides coherent results

Algorithms producing better-looking results:

Bresenham’s line algorithm, optimized for implementation
Xiaolin Wu'’s line algorithm, with sub-pixel rendering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/212

a Line and shape aliasing, sub-pixel drawing
o)
Lines are often subject to aliasing:
Sampled from the continuous domain with pixel sampling resolution
Selecting the best axis gives a better resolution
Limited display resolutions still make them look pixelated
Any geometric shape is affected, especially fonts
Sub-pixel rendering is used to provide anti-aliased results:

Surrounding pixels are given an intermediate value
Specific algorithms perform sub-pixel drawing
Also obtained with high-resolution rendering and anti-aliased downscaling

00/ /

Shapes rendered without and with sub-pixel anti-aliasing

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

42/212

60 Line and shape aliasing, sub-pixel drawing (illustrated)

g

Pixel drawing versus sub-pixel drawing (x-axis major)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/212

a Circles and polar coordinates

o)

Circles centered on (x, yc) are defined (Pythagoras theorem) as:
(x—x¢)? + (y — yo)? = radius®

Which is always verified with the expression:

y
X = Xc + radius X cos(¢)
y = yc + radius x sin(¢) .)
Corresponds to a translation in polar coordinates 5 E
From a (x, y) base to (r, ¢) Toosg X

Iteration on ¢ with a specific range: ¢ € [0; 27|

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

44/212

o%e]

a Parametric curves
o)

Parametric curves generalize the idea of using independent parameters

Each curve has defining equations and ranges for parameters
Equations allow calculating (x,y) (or (r,®))

Drawing is achieved by iterating over parameter values

Sampling is done on the range to get a finite number of points
X/Y coordinates are calculated for each point
Line interpolation is used between consecutive points

Ellipse: ¢ € [0; 27]

X = Xc+ a x cos(¢)
Yy =Yc+ b xsin(¢)
Many more parametric curves exist:

Cycloid, Epicycloid, Epitrochoid, Hypocycloid, Hypotrochoid (spirograph)
Lissajous Curve, Rose curve, Butterfly curve

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

45/212

ao Base Theory and Concepts About Graphics

o%e]

Pixel Operations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/212

Regi
Q@ egion copy

o%e]

Requirements for all pixel operations:

The source and destination must use the same pixel format
Must be converted before any operation otherwise

Most basic operation on pixels: copying a region

Also known as bit blit or BITBLT (in reference to the hardware opcode)
Implemented as a line-per-line copy (maximum memory-contiguous block)
Overwriting destination memory with source memory

Copies within the same image are not always safe!
Destination must not overlap source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/212

%Alpha blending

» Compositing multiple alpha-enabled pixel sources into a single result

® Simplest case: aggregating sources with z-ordered stacking
¢ Equation for A over B (with « the alpha and C the color component value):

G+ Grap (1 — ag)
az+ap(l—a,)

[e]

> With alpha available, many more operations become possible

® Shapes can be used as masks, with logic operators
¢ Formalized by Porter and Duff in 1984

Aover B AinB AoutB Aatop B AxorB

—_— -~ PR ——~ —~

Y N Ay N A\

Opaque ol o] e |

i v N e
eSnae] ok

o

-~ -~ -~

s

Partially- R 7! o =R ~ (R h

transparent) 1 é;.:) 1] N)

Aand B A S 1 z 4 S JI 7 7’
oeCnn oy

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/212

4% Color-keying

Color-keying (or chroma-keying): replacing given colors with alpha
Specified with color ranges (3 RGB ranges)

>
>
> Pixels either within or outside of the range are made transparent
> Used in conjunction with alpha blending

>

The famous video green-screen method uses color-keying

Color-keying implemented in Blender

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/212

a Scaling and interpolation
o)
Scaling is a resizing operation on a pixel picture

Involves a scaling factor (integer or real)
Values are resampled with a new resolution
Requires reconstructing the original signal

Implemented with some form of interpolation:
nearest-neighbor: uses the nearest pixel value from the source

Xsource = Xdestination ~+ Scale

bilinear interpolation: sub-pixel linear weighting of neighbor colors
bicubic interpolation: smooth spline sub-pixel fitting with neighbor colors
Sub-pixel methods provide better visual results
Down-sampling;:
Reduces the maximum image frequency
Can cause aliasing: high frequencies need to be removed

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/212

a Linear filtering and convolution
o)

o%e]

Filtering is a transformation of each pixel based on its neighbors

The pixel output value is a linear sum of weighted neighboring input values

Ox,y = Oéol'x’y + Oéll'Xfl,y + OéQI'XJrLy + ...

Weighting coefficients are represented in a 2D matrix: the filter kernel

Comes with 2n+ 1 columns and 2m + 1 rows
The coefficients are applied to each input pixel and its neighbors
The element at the kernel center weights the current input pixel

Corresponds to a convolution operation between pixels and the filter kernel
High computational cost (optimizations are implemented)

Allows many applications for 2D signal processing

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/212

60 Linear filtering and convolution (illustrated)
OC

o%e]

e
B

pixel values filter kernel filter application result

Linear filtering in application

glx,y) =w=*flx,y) = Z Z JAx—s,y—t)

s=—nt=—m

Bi-dimensional convolution operation on f with the w kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/212

Blur filters
o

o%e]

Blurring is a common example of linear filtering

Corresponds to a low-pass filter
Removes high frequencies from the picture (details)
Good fit for pre-scaling anti-aliasing

Implemented with different algorithms:

Box blur: rough but easy to optimize Gaussian blur: reference smooth blur
1 1 1 1 2 1
1 1
) 1 1 1 6 2 4 2
1 1 1 1 2 1

A repeated box blur converges towards a Gaussian one (central-limit theorem)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/212

4@,? Dithering

P Reducing the color depth can lead to visually-unpleasant results

® Corresponds to color-space down-sampling
® Increases color quantization error

» Floyd—Steinberg dithering is a method for improving quality with low depth

> Quantization error is evaluated and distributed to neighboring pixels

> Used in hardware display engines and the GIF file format

Y

?I l

Cat at initial depth Cat at reduced depth Cat at reduced depth
without dithering with dithering

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

54/212

4@3 Graphics theory online references

» Wikipedia (https://en.wikipedia.org/):

Color model

Color depth

YCbCr

Chroma subsampling
Nyquist—=Shannon sampling theorem
Spatial anti-aliasing
Aliasing

Line drawing algorithm
Parametric equation
Alpha compositing

Image scaling

Kernel (image processing)

> http://ssp.impulsetrain.com/porterduff.html

> https://magcius.github.io/xplain/article/regions.html

> https://magcius.github.io/xplain/article/rast1.html

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

55/212

https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Color_model
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/YCbCr
https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Spatial_anti-aliasing
https://en.wikipedia.org/wiki/Aliasing
https://en.wikipedia.org/wiki/Line_drawing_algorithm
https://en.wikipedia.org/wiki/Parametric_equation
https://en.wikipedia.org/wiki/Alpha_compositing
https://en.wikipedia.org/wiki/Image_scaling
https://en.wikipedia.org/wiki/Kernel_(image_processing)
http://ssp.impulsetrain.com/porterduff.html
https://magcius.github.io/xplain/article/regions.html
https://magcius.github.io/xplain/article/rast1.html

Q}Graphics theory illustrations attributions

34C3 Fairy Dust: Freddy2001, CC BY-SA 3.0

Point de vue du Gras: Joseph Nicéphore Niépce, public domain
Pinball Dot Matrix Display: ElHeineken, CC BY 3.0
Soderledskyrkan brick wall: Xauxa, CC BY-SA 3.0

Aliasing Sines: Moxfyre, CC BY-SA 3.0

Moiré pattern of bricks: Colin M.L. Burnett, CC BY-SA 3.0
Moiré Pattern at Gardham Gap: Roger Gilbertson, CC BY-SA 2.0
RGB cube: Datumizer, CC BY-SA 4.0

Pair of Merops apiaster feeding: Pierre Dalous, CC BY-SA 3.0

vV v v V. V. V. Vv VY

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/212

https://commons.wikimedia.org/wiki/File:2017-12-28_Leipzig,_34c3,_Fairy_Dust_(freddy2001).jpg
https://commons.wikimedia.org/wiki/File:View_from_the_Window_at_Le_Gras,_Joseph_Nic%C3%A9phore_Ni%C3%A9pce.jpg
https://commons.wikimedia.org/wiki/File:Pinball_Dot_Matrix_Display_-_Demolition_Man.JPG
https://commons.wikimedia.org/wiki/File:Soderledskyrkan_brick_wall.jpg
https://commons.wikimedia.org/wiki/File:AliasingSines.svg
https://commons.wikimedia.org/wiki/File:Moire_pattern_of_bricks.jpg
https://commons.wikimedia.org/wiki/File:Moire_pattern_of_bricks_small.jpg
https://commons.wikimedia.org/wiki/File:RGBCube_a.svg
https://commons.wikimedia.org/wiki/File:Pair_of_Merops_apiaster_feeding.jpg

Q}Graphics theory illustrations attributions

Hsl-hsv models: Datumizer, CC BY-SA 3.0

Barns grand tetons: Jon Sullivan, public domain

Top-left triangle rasterization rule: Drummyfish, CCO 1.0

Line scan-conversion: Phrood, CC BY-SA 3.0

Alpha compositing: Prometeusm, Wereon, public domain

Blender3D com key chroma: Toni Grappa, Blender Foundation, CC BY-2.5
Dithering example: Jamelan, CC BY-SA 3.0

vV vV v vV vV VY

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/212

https://commons.wikimedia.org/wiki/File:Hsl-hsv_models_b.svg
https://commons.wikimedia.org/wiki/File:Barns_grand_tetons.jpg
https://commons.wikimedia.org/wiki/File:Top-left_triangle_rasterization_rule.gif
https://commons.wikimedia.org/wiki/File:Line_scan-conversion.svg
https://commons.wikimedia.org/wiki/File:Alpha_compositing.svg
https://commons.wikimedia.org/wiki/File:Blender3D_com_key_chroma.jpg
https://en.wikipedia.org/wiki/File:Dithering_example_dithered_web_palette.png

Hardware Aspects

bootlin

Hardware Aspects

© C ight 2004-2024, Bootlin. . R :
OPYTE ootin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/212

a Hardware Aspects
o)

o%e]

Pipeline Components Overview and Generalities

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com 5 /212

ao Technological types of graphics hardware implementations

o%e]

Dedicated graphics hardware is often used along a general-purpose CPU
Two commonly-used technologies, with typical pros/cons:

Fixed-function

Programmable

Technology
Source form
Product form
Implementation

Circuit
HDL
Silicon, bitstream
FPGA, ASIC, SoC block

Software
Source code
Firmware binaries
DSP, custom ISA

Arithmetic Fixed-point Fixed-point, floating point
Clock rate / power Low High

Pixel data access Queue (FIFO) Memory

CPU control Direct registers Mailbox

Die surface High Low
Reusability Low High

Example Allwinner SoCs Display Engine TI TMS340 DSP

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, t

raining and support - https://bootlin.con

60/212

ao Graphics memory and buffers

o%e]

Pixel data is stored in memory buffers, called framebuffers

Framebuffers live either in:
System memory: shared with the rest of the system (e.g. SDRAM or SRAM)
Dedicated memory: only for graphics (e.g. SGRAM)

Framebuffers that can be displayed are called scanout framebuffers
hardware constraints don’t always allow any framebuffer to be scanned out

CPU access to pixel data in dedicated memory is neither always granted nor easy!

Graphics hardware needs configuration to interpret framebuffer pixel data
pixel meta-data is rarely to never stored aside of the pixel data

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/212

Q} Display hardware overview

Stream pixel data to a display device, via a display interface
Internal pipeline with multiple components

Generally fixed-function hardware, pipeline sink only

Either discrete (video card) or integrated

Connected to the CPU (and RAM) via a high-speed bus:
e.g. AXI with ARM, ISA, PCl, AGP, PCl-e with x86

vVvyYVYyyVvyy

A 1986 Hercules discrete video card An Intel processor with integrated graphics

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/212

ao Common components of a display pipeline overview
o0

g
Framebuffer
.

Planes | CRTC »| Encoder [—¥»| Connector »| Monitor

pixel ' pixel ' pixel
memory ! stream ! video signal

Framebuffers for storing the pixel data
streamed using a DMA engine

Planes for associating a framebuffer with its dimensions and position
composited into a single result on-the-fly

CRTC for streaming resulting pixels with specific timings
terminology comes from the legacy Cathode-Ray Tube Controller

Encoder for meta-data addition and physical signal conversion
Connector for video signal, display data channel (DDC), hotplug detection
Display for decoding and displaying pixels (panel or monitor)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/212

a Render hardware overview
e

Rendering hardware includes a wide range of aspects (usual cases below):
Basic pixel processing:

Common operations: pixel format conversion, dithering, scaling, blitting and blending
Fixed-function hardware, pipeline sink and source

Complex pixel processing:
Defined by the application: any computable operation
Programmable hardware (DSP), pipeline sink and source
2D vector drawing:

Rasterization from equations, parameters and data (e.g. points)
Either fixed-function or programmable hardware (custom), pipeline source

3D scene rendering:

Rasterization from programs (shaders) and data (e.g. vertices, lines, triangles
textures)
Programmable hardware (GPU), pipeline source

Rendering can always fallback to general-purpose CPU operations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

64/212

a Video hardware overview
o)

g

Video-oriented hardware comes in different forms (usual cases below):

Hardware video decoder (VPU /video codec decoder)
Decodes a video from compressed data (bitstream) to pixel frames
Fixed-function hardware, pipeline source

Hardware video encoder (VPU /video codec encoder)
Encodes a video from pixel frames to compressed data (bitstream)
Fixed-function hardware, pipeline sink

Camera sensors, video input, video broadcasting (DVB)

Receives/sends data in a given configuration from/to the outside
Can be compressed data (bitstream) or raw pixel data
Fixed-function hardware, pipeline source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

65/212

ao |/O with graphics hardware, pipelines

o%e]

Graphics hardware is 1/O-based and interacts with pixel data
Pipeline elements have input-output abilities:

Source components: feed pixel data: e.g. camera
Sink components: grab pixel data: e.g. display

Some components are both a source and a sink: e.g. converters

Graphics components can be chained in pipelines
Usually from a source-only element to a sink-only element

Camera source [P sink Converter source [—| sink Display

YUV 4:2:2
1280x720

RGB 8888
1920x1080

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/212

ao Building complex pipelines

o%e]

Display, rendering and video elements are chained from source(s) to sink(s)
On source-sink boundaries:

Mutually-supported pixel format (or conversion)
Mutually-accessible memory (or copy) or internal FIFO

Target frame rate (fps) gives a time budget for pipeline traversal:
to+t+ta+ts < fps™!, to+t3 < fps ', t; +ty+t5 < fps!

User Interface source

sink Converter source

sink Video encoder

sink Blitter source |—)| sink Display |

| Camera source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/212

ao Debugging pipelines

o%e]

Debugging a complex pipeline can become hard:
Many elements in the chain means many possibilities for trouble
A single point of failure is enough
Can be difficult to identify
Debugging tips:
Validating each element separately
Dumping (intermediary) framebuffers to memory/storage for validation
Using hardware pattern generators
Common pitfalls:
Mismatch between advertized format and reality
Lack of output-input sync between elements
Input data updated too fast

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

68/212

a Hardware Aspects
o)

o%e]

Display Hardware Specifics

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/212

%Visual display technologies generalities

> Pixel data is pushed from the display interface to a visible surface
using a dedicated controller on the display device

> Pixels are split into 3 color cells (R-G-B)
® The human eye naturally merges light from the 3 cells
> Pixel frames are displayed as (physical) arrays of color cells

> Smooth sequences require at least 24 fps, more is usually best

R4 R L " 5

161800 QTR A SR O UR S T B
BREE Hoths e 5 o puRERRETURERE
FRREECL S 00 £ 6 1 6 A SREERETE Qe
010 AT DA TR 0 BRREL 0 04 B 04
] WATE A AT A
2, BN B m Sanmesmanw

OSE AN astey
HMm A
ARTI

L
I
L
L
W
2l
Tt
i
o
®
[
[
«
Ll
®

Pixel color cells on a LCD TN panel A pixel array displaying text

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/212

4@,? CRT display technology

» Color cathode-ray tubes (CRTs), since the 1950s:

® Using electron beams to excite a phosphorescent screen

® Beams are guided by magnetic deflection
One beam for each color with increased intensity for increased luminosity
High energy consumption
High contrast, low response time (1 — 10 us)
Other issues: monitor size, burn-in (screensavers), remnant magnetic field
(degaussing), high voltages and magnetic fields

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/212

ao Plasma display panels technology

o%e]

Plasma display panels (PDPs), since the 1990s-2000s:

Using gas cells brought to plasma state to strike light-emitting phosphor
Flat array of cells, scales to large surfaces

Medium energy consumption (depends on luminance)

High contrast, low response time (< 1 us)

Other issues: burn-in

Gradually being deprecated in favor of other flat-panel technologies

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/212

4@3 LCD display technology

» Liquid crystal displays (LCDs) using Thin-film-transistors (TFT):

Using the electrically-controlled alignment of crystal structures to block light
Does not emit light: needs an always-on backlight source (usually LEDs)

Low energy consumption (depends on backlight)

Medium to low contrast, medium response time (1 — 10 ms)

Twisted nematic (TN): limited color quality and viewing angles, since the 1980s
In-plane switching (IPS): improved color and viewing angles, since the 2000s

AAAAAAAAAAAAAAAAAAANAAANN
AAAAAAAAAAAA

AAAAAAAAAAN

AAALAAAAANA

AAAAAAAAAANAA

AAAAAAAAAAAAAAAAAAAAAAAAN

AAAAAAAAAAAAAAAAAAAAAAANN
AAAAAAABAAAAAAAAAAAAAAANA
AAAAAAAAAAAAAAAAAAAAAAANN

AAAAA

ann

ANA
AAAAAAAAAAA AAAAA

Chevron shapes that improve the viewing angle on IPS LCDs

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

73/212

4% OLED display technology

» Organic light-emitting diodes (OLEDs), since 2010:
¢ Using organic compounds (carbon-based) to emit light as R-G-B LEDs
Allows flat and flexible surfaces, with a large viewing angle
Low energy consumption
Very high contrast, low response time (1 — 10 us)
Issues: burn-in, independent cells aging, affected by UV light
Rapidly becoming very popular and used

A flexible OLED display panel

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/212

4@3 EPD display technology

» Electrophoretic displays (EPDs), since the 2000s:

® Using black and white electrically-charged ink-like particles in oil
e.g. positive charge for black and negative for white

® Electric fields attract one or the other color with current flow
the particles stay in place after they were moved

® Using incident light, does not emit light itself

® Very low consumption (only for changes)

® Very high response time (100 ms) and ghosting

An e-reader with an EPD display Detail of an EPD display

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/212

a@ Display panels integration and monitors
o0

o%e]

Panels come with a dedicated controller to:

Decode pixels from the display interface

Electrically control the color cells of the panel
Panels can be used standalone, usually with:

A single simple display interface

No standardized connector, weak and short cables

Only native dimensions supported and little to no configuration
Or they can be integrated in monitors, usually with:

More complex and multiple display interfaces

Standardized connectors, external cables

Configuration (buttons and Ul overlay), multiple dimensions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

76/212

4@3 Display panels integration and monitors (illustrated)

A display panel used standalone with an embedded board

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/212

ao Display panels refreshing

o%e]

Most display panel technologies need frequent pixel updates: refreshing
Colors would fade out without refresh
Panels usually lack internal memory to self-refresh
Requires a fixed refresh rate:
Capped by the display technology or display interface
Directly impacts smoothness: minimum is usually 30 Hz
The whole frame must be sent over each time
Requires synchronization points:
Vertical: beginning of a new frame
Horizontal: beginning of a new line
Requires blank times:
Account for line/frame preparation time
Initially for CRT electron gun repositioning
More or less useful depending on the technology

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/212

a@ Display timings and modes

o%e]

Timings coordinate how a frame is transmitted to a display over time
Required signals are synced to a pixel clock (time base)
Display timings are split in a few stages (horizontal and vertical):
Sync pulse (vsync/hsync)
Back porch (vbp/hbp): blanking
Active region (vactive/hactive)
Front porch (vfp/hfp): blanking
Pixels are transmitted during the horizontal active region (one line)
A display mode groups all timing and signal characterization information
Signals are generated by the CRTC according to the display mode
Monitors usually support multiple modes (and dimensions):

Standard modes are defined by VESA
Extra specific modes for the monitor can be supported

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

79/212

a@ Display timings and modes (illustrated)

g

Frame i

Linej

Pixel clock

Pixel data

The unit for horizontal stages is one pixel clock period

The unit for vertical stages is one line’s duration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/212

60 Display timings and modes (panel example)

o%e]

hsync = thpw = 20 € [[1;40]

- o T - hbp = thb — thpw = 46 — 20 = 26 (from diagram)
e e e hactive = thd = 800
hfp = thfp = 210 € [16;354]
e htotal = hsync + hbp + hactive + hfp = 1056
w6 o e oo vsync = tvpw = 10 € [1;20]
T _ vbp = tvb — tvpw = 23 — 10 = 13 (from diagram)
- B S 0 = e B vactive = tvd = 480
e oo e o] vip = tvfp = 22 € [7;147]
o B vtotal = vsync + vbp + vactive + vfp = 525

1 frame takes: vtotal x htotal = 554400 tgy
ATO070TN94 panel datasheet 60 frames take: vtotal x htotal x 60 = 33264000 tcj
60 fps requires: fou > 33.264 MHz
Panels usually support a range of timings

The pixel clock rate is often rounded (refresh rate not always strictly respected)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

81/212

ao Side-channel and identification
o0

o%e]

Monitor display connectors often come with a Display Data Channel (DDC)

Side-bus to allow communication between host and display
Usually based on 12C, quite slow (= 100 kHz)

DDC provides access to the Extended Display ldentification Data (EDID)

Contains the list of supported modes in a standard format
Usually stored in an EEPROM at 12C address 0x50

Another common monitor signal is Hotplug Detect (HPD)
Connected to a pin of the connector, asserted with a cable plugged
Can be wired to an interrupt pin to detect connection changes
Direct panel interfaces (not monitors) usually lack DDC, EDID and HPD

Panel is always considered connected
Modes need to be known in advance

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

82/212

a@ Extra display interface features and EDID extensions
o0

o%e]

The EDID standard keeps evolving and exposes new features through extensions
Configuration data for each feature is embedded in the EDID

More or fewer features are supported depending on the display interface

Common extra display interface features:
Interlaced: Every other pixel line is sent at a time, alternating between top-fields
and bottom-fields; Allows faster refreshing for CRTs, needs deinterlacing for
progressive panels;
Audio: Send audio in addition to pixels, during blanking periods;
Stereoscopy: Pixel data is split between two screens that show a different
geometrical perspective, providing 3D perception;
Variable Refresh Rate (VRR): Pixel data can be sent at any point and does not
need to conform to a given refresh rate;
Consumer Electronic Control (CEC): Remote control features on a dedicated bus;
High-Bandwidth Digital Content Protection (HDCP): Anti-copy protection

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/212

a@ Types of display interfaces

o%e]

Legacy display interfaces are usually analog:
Transmission through a DAC-based chain
Lack of precision, noise and chain error: not pixel-perfect, capped
Requires few signal pins (1 per color channel and sync or less)
Recent interfaces are usually digital:

Encoded binary transmission, usually with dedicated clock
Encoders contain a controller (logic) and a PHY (signal)
Pixel data is expected to be bit-perfect (but noise still exists)

Digital interfaces can be parallelized:

One signal per color bit (e.g. 24 signals for 24-bit RGB), clock and sync
One clock cycle for one pixel (low clock rate)

Or they can be serialized:

Pixel data is sent over physical lanes (one or more)
One clock cycle for one bit on each lane (high clock rate)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

84/212

ao Types of display interfaces (illustrated)

g
Device Connector, cable Monitor
CRTC R// Encoder [~ / ~] Decoder Rll Panel
G G or
// \J f\ /I
8/, 8/, CRT
s/, [~ / ™~ s7,
7 ~ / r\: v
Analog Digital parallel Digital serial
Encoder Encoder Encoder
] DAC Red R R R Lane 0
fmm- ane
Gll Green // // //
57 DAC . G’y H G’y G’y Lane 1
u T
+ DAC 8/, TPHY | 87, 87, PHY [Lane 2
2y veyne s/ ! s/ s/ Clock
/ Hsync Vi : Vi Vi
|__ 7 7
+ Controller + Controller

R: Red[0:23], G: Green[0:23], B: Blue[0:23], S: Sync and clock /Signal bus

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

85/212

a@ VGA display interface

o%e]

Video Graphics Array (VGA), since 1987 (IBM)

Analog pixel data on 3 pins (R-G-B), DAC encoder to 0.7 V peak-to-peak
Per-channel pixel streaming (voltage change), following mode timings
Hsync and vsync signals, 12C SDA and SDL DDC signals

Hotplug detection with R/G/B pins current sensing

Using a DB-15 connector for signals:

00000
C)‘!H!i,(j

Pixel: Red, Green, Blue (1, 2, 3), Ground returns (6, 7, 8)
Sync: Hsync, Vsync (13, 14)

Side: DDC SDA, DDC SCL (12, 15)

Power: +5 V (9), Ground (10)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/212

%VGA display interface (illustrated)

i
sipdil
By

~4|:|4—>
n rlu o
c rHh
® ‘v' e
5 B8 oo 313
g SREEEAA N
g
N

A2 v2 5
LCD_D18 6 o ¥ 4 R20 LCD_DA
T Lco it

UGACTRL 1~ |7 vE‘ E"Q UBA_CTR
2 1S

]
b TS BATS:
20 9 R28 Leopi2 | 1 R 004
) Y Picug o — .
cop21 | 13 vz |z R3l==p2 Lco b3 | 13 R3Z7=— Lco_og|
co_p22 | 1 : 35 = Lcopi4 | 1 : € 004
15 | o v3 2 15 1 a3 = + FE
3| 17 s va |3 Re8==psev/in] Nicoots | 1 e EAETZA NS :
J
1
194

F%@ﬁ?g%

LCD_USYNC RS8 UGA_USYNC

> Very basic VGA encoder from parallel signals, DDC excluded

> Resistor ladder for digital-to-analog conversion
using SN74ALVC244 voltage level shifters (1.8 V to 3.3 V), clamping diodes

> 6 most-significant bits only, 2 least-significant bits set to 0
DO0-D1, D8-D9 and D16-D17 are not routed

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/212

a@ DVI display interface

o%e]

Digital Visual Interface (DVI), since 1999 (DDWG)
DVI-A: Analog only, comparable to VGA
DVI-D: Digital only, single-link (3 data lanes) or dual-link (6 data lanes)
DVI-I: Both analog and digital supported, single-link or dual-link
Digital serial link using Transition-Minimized Differential Signaling (TMDS)
Dedicated DDC and HPD signals
Using a subset or variation of the full DVI-I connector for signals:

EREEIE] ane
o |[10][1|[12][13][14][15][16
17][18][19][20[21][22|[23 2] =LE

TMDS: Data+ (2, 5, 10, 13, 18, 21), Data- (1, 4, 9, 12, 17, 20), Clock (23, 24)
Analog pixel: Red, Green, Blue (C1, C2, C3), Ground (C5)

Analog sync: Hsync, Vsync (C4, 8)

Side: DDC SDA, DDC SCL (7, 6), HPD (16)

Power: +5 V (14), Ground (15)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/212

a@ HDMI display interface

o%e]

High-Definition Multimedia Interface (HDMI), since 2002 (HDMI Forum)
Similar to DVI-D: no analog, 3 TMDS data lanes (R-G-B)
Adding the use of AVI infoframes for meta-data and audio
High bandwidth (< 48 Gbit/s) (2.1) and clock speeds (< 340 MHz)
Extra features: Audio, CEC (1.2), HDR (1.3), 4K (1.4), Stereoscopy (1.4),
8K-10K (2.1), DSC (2.1), HFR (120 Hz), per-frame HDR (2.1)
Using a dedicated (and proprietary) HDMI connector for signals:

TMDS: Data+ (1, 4, 7), Data- (3, 6, 9), Clock (10, 12)
Side: SDA, SCL (16, 15), HPD (19), CEC (13)
Power: +5 V (18), Ground (17)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/212

a@ DP /eDP display interface

DisplayPort (DP), since 2008 (VESA)
Digital serial link with 4 data lanes using Low-Voltage Differential Signaling
(LVDS) or TMDS for DP Dual-Mode (DP++), compatible with DVI-D and HDMI
Using packets for video/audio data and meta-data
Auxiliary channel encapsulating 12C DDC, CEC and more (e.g. USB)
High bandwidth (< 77.37 Gbit/s) (2.0)
Extra features: Audio, CEC, HDR (1.4), 4K (1.3), Stereoscopy (1.2),
8K (1.3-1.4), 10K-16K (2.0)
Multi-Stream Transport (MST) to chain displays
Using a dedicated (and proprietary) DisplayPort connector for signals:

LVDS/TMDS: ML+ (1, 4, 7, 10), ML- (3, 6, 9, 12)
Side: AUX+ (15), AUX- (17), HPD (18)
Power: +3.3 V (20), Ground (2, 5, 8, 11, 16)

Embedded DisplayPort (eDP) for internal panels (without connector)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/212

a@ LVDS and DSI display interfaces

o%e]

Low Voltage Differential Signaling (LVDS)
Generic digital serial link with clock and data signals (3-4 lanes) using LVDS
Pixel data and control (vsync, hsync, display enable) sent as bits on lanes
Uses a fixed mode, no DDC, no packets
Specified with the JEIDA, LDI, DSIM and VESA specifications
For internal panels, exposed with specific connectors
Common for laptop panels

Display Serial Interface (DSI), since 2006 (MIPI)

Digital serial link with clock and up to 4 data lanes using LVDS

Using packets for video data and meta-data

Commands for configuration can be issued with the DSI Command Set (DCS)
Generic base with proprietary vendor-specific extensions

For internal panels, exposed with specific connectors

Common for mobile devices' panels

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/212

a@ DPI display interface

o%e]

Display Parallel Interface (DPI)
Generic parallel digital interface, with 1 signal per color bit, clock and sync
Exists with different numbers of bits: 24 (8-8-8), 18 (6-6-6) or 16 (5-6-5)
Dithering is required when using 16 or 18 bits
Sends pixel data bits following mode timings
Base signals: color data bits, vsync, hsync
Extra signals: display enable (DE)
Beware: sync and DE signals can be active-high or active-low
For internal panels, requires many signals

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/212

a Bridges/transcoders
bdh)

Jo3e!

Not every display interface is supported by the hardware at hand
Bridges or transcoders are used to translate from one interface to another
They are composed of a decoder and an encoder (in a single package)

Usually standalone and transparent, often only replicate timings
but some can have a side-bus for configuration and fine-tuning

Example: VGA interfaces are usually bridged from digital interfaces nowadays

A DP to DVI bridge

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/212

a Hardware Aspects
o)

o%e]

Rendering Hardware Specifics

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/212

a Digital Signal Processors
o)

o%e]

Digital Signal Processors (DSPs) allow programmable image signal processing
can also be used for implementing 2D rendering primitives
Using a dedicated Instruction Set Architectures (ISA)
Arithmetic implementations are either:
fixed-point: simple hardware implementation, fixed range (usually 16.16)
16 bits for the integer part and 16 bits for the decimal part
floating-point: complex implementations, trade-off between range and precision
Usually more power-efficient than general-purpose CPUs
Depending on the DSP, the software can be:
A standalone firmware, usually developed from vendor libraries (C/C++/ASM)
A real-time operating system (RTOS) application (C/C++/...)
Can be used standalone in a video pipeline or to offload a CPU

Modern DSPs can be multi-core and feature various |/O controllers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/212

ao Dedicated hardware accelerators
o0

o%e]

Fixed-function hardware can be used for accelerating specific operations
Implemented as hardware circuits in Systems on a Chip (SoCs) or DSPs
Implemented as logic configuration bitstream in FPGAs

Implement a configurable fixed pipeline for image operations

Accessed and configured through specific registers exposed via a bus

Global configuration registers to build the pipeline between blocks
Configuration registers for each block
Kick and status registers

Usually very power-efficient and very fast

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/212

Q} Dedicated hardware accelerators (illustrated)

DMA 0

Controller

DMA 1

System DRAM

DMA 2|

DMA
Controller

1532

Data Channel Sorter

Output
Fmt

DMA 3

N/

An example hardware pipeline for a 2D graphics block

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/212

ao Graphics Processing Unit

o%e]

Graphics Processing Units (GPUs) are 3D rendering hardware implementations
the term no longer designates all graphics-processing hardware

Operate on 3D graphics primitives: points (vertices), lines and triangles

Generate a 2D view (viewport) from a given perspective
Objects are formed of interconnected triangles
A color can be applied to each vertex and interpolated
Textures can be applied to objects with texture element to vertex mapping
Lighting is applied from various sources
Expected to render at display scanout rate (pseudo real-time)

Usually not photo-realistic methods as ray tracing or photon mapping
Extremely efficient compared to any general-purpose CPU

GPUs are also used for general-purpose computing with GPGPU

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/212

a@ Graphics Processing Unit architectures
o0

o%e]

GPUs implement a pipeline of hacks accumulated since the 1970s
GPU hardware architectures evolved over time:

From fixed-function configurable hardware block pipelines

To pipelines with both fixed blocks and specialized programmable processing units
Shaders are programs that run at different steps of the pipeline:

vertex shaders: define the position, texture coordinates and lighting of each vertex
geometry shaders: generate new primitives from the provided ones

tesselation shaders: perform vertex sub-division (e.g. Catmull-Clark)
fragment/pixel shaders: perform rasterization for each output pixel

Scenes can be rendered with multiples passes and multiple shaders

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/212

%Graphics Processing Unit architectures (illustrated)

A

Input Assembly

Vertex/index
buffers

Textures

Memon
v Early Depth Test

Textures

Depth Test

tvyy

Render Target output

A programmable GPU pipeline

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/212

ao Graphics Processing Unit techniques

o%e]

GPUs are optimized for performance and good-looking results
Texture sampling can easily cause aliasing (at a distance)

Bilinear and trilinear filtering is often used

Anisotropic filtering provides best visual results

Mip-maps provide the same texture at different sizes

Multi-Sample Anti-Aliasing (MSAA) averages colors from multiple points

Texture compression reduces memory pressure (e.g. S3TC, ASTC)
Normal mapping/bump maps provide increased details with low vertex count
affects light path calculation

Avoiding useless rendering operations:

Occluded surfaces are not rendered (visible surface determination)
Using a depth/z-buffer to keep track of the z-order for each output pixel
Culling for early vertex removal: back-face, view frustum, z-buffer

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/212

%Graphics Processing Unit techniques (illustrated)

Comparison of tri-linear and A mip-mapped texture representation
anisotropic anti-aliasing filtering

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/212

ao Graphics Processing Unit internals
o0

o%e]

A command stream is parsed and used to configure the pipeline
Shader cores have highly-specialized ISAs adapted for geometry:
Vector operations, SIMD Interpolation operations
Trigonometric operations Usually few conditionals
Texture access is provided by a Texture Mapping Unit (TMU)
Caching is used to reduce memory pressure
Modern GPUs sometimes have a unified shader core
allows efficient hardware resources usage, with complex scheduling
Shading cores are duplicated and work in parallel (especially rasterization)
Some architectures implement tiled processing:

Output is divided in tiles (clipping areas) and distributed to cores
Each rasterized tile is written to the output framebuffer separately

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/212

a Hardware Aspects
o)

o%e]

System Integration, Memory and Performance

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/212

a Graphics integration and memory
o)
Graphics devices integrated in larger systems need two main interfaces:

Control interface (low speed): to program the device from the main CPU
Memory interface (high speed): to read the source data and write their framebuffer

Other usual required elements: clocks, interrupts, reset

Both the graphics device and the CPU need to access the memory
Different types of memory used by graphics hardware:

graphics memory: dedicated memory attached to the graphics device

the memory is made available to the CPU through the memory interface
dedicated system memory: a reserved contiguous area of system memory
required when the device has no mapping unit

system memory pages: any system memory page can be mapped for access
for devices with a dedicated IOMMU and graphics address remapping table (GART)

Since the two parties access the same memory, cache can become incoherent

Cache must be synchronized before reading and after writing, or disabled

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

105/212

a@ Shared graphics memory access

o%e]

Concurrent access to memory can lead to trouble:
Concurrent read-write accesses result in partially-updated data
Concurrent write-write accesses result in incoherent data
Common issue with display hardware: tearing
The framebuffer is scanned out at a fixed rate (e.g. 60 ps)
Any modification during scan out will result in a partial update
Causes an unpleasant visual glitch effect
Solved using (at least) double-buffering:
The displayed buffer (front buffer) is kept intact
Another buffer (back buffer) is used for drawing the next contents

Front and back buffer are exchanged with page flipping, during vertical blanking
Using more buffers is possible if rendering can be done in advance

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

106/212

_%Graphics shared memory access (illustrated tearing)

Tearing example: data is updated during scanout

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/212

ao Graphics memory constraints and performance
o0

o%e]

Fixed-pipeline 2D graphics hardware usually streams pixels through FIFOs
A DMA engine fetches pixel data from framebuffer memory

To simplify the logic and optimize memory access, memory constraints may apply:
The start address of each line needs to be aligned to 2"
The byte size of each line needs to be aligned to 2"
The stride or pitch describes the line byte size
Calculated as: ALIGN(width x bpp/8, 2")
The size of a framebuffer becomes (single-planar): stride x height
memory may be over-allocated to satisfy alignment constraints
Pixel order in memory may not follow raster order:
Optimized depending on the hardware architecture
Optimized for efficient memory access

Tiled orders are frequent for parallel hardware
Framebuffer sizes are calculated with a specific formula

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/212

- Tiled framebuffer format example

A

The Allwinner VPU tiled format

A tiled framebuffer read in raster order

Example image 9696 px
9 oreas 6 3232 px

olo3ijof:2i0 &3j0fe4i0

A B

0131 3113132131 63131/64|31
0132 32 mA32 6313264132

D

163 3116332163 63163/64163
Ol6s 3116432064 6316464164

G

0195 3119532195 3195/64195

9510

The same framebuffer read properly

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

109/212

ao Offloading graphics to hardware

o%e]

Offloading graphics to hardware frees up significant CPU time
For many use cases, it is crucially needed:

Video presentation at a given frame-rate, with format conversion and scaling
3D scene rendering at display refresh rate
Windows and cursor composition at display refresh rate

Offloading is not (always) a magical solution:
Fixed setup costs must be significantly lower than CPU processing time
small operations are sometimes more efficient on-CPU
Asynchronous interrupts can introduce latency compared to active polling
but blocking the whole system is not always an option

2D hardware is usually more efficient and adapted than bringing up the GPU
the GPU is a power-hungry war machine that solves problems at a price

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/212

a@ Graphics performance tips

o%e]

Making the most of hardware can help a lot

e.g. camera controllers can often provide format conversion and scaling
Generally reducing the number of devices in the graphics pipeline

One major bottleneck in graphics pipelines is memory access:

Memory buffer copies must be avoided at all costs (zero-copy)
Chained elements in a pipeline should share the same buffer
hardware constraints are usually compatible in SoCs

Redrawing full frames should be avoided when possible

Local operations should be clipped
Buffer damage has to be accumulated in the multi-buffering case

Graphics in operating systems is usually best-effort

DSPs can usually provide real-time guarantees

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/212

Q}Graphics hardware online references
A

> Wikipedia (https://en.wikipedia.org/):

Graphics pipeline

Comparison of display technology
List of video connectors

Digital signal processor

Graphics processing unit

Tiled rendering

Multiple buffering

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/212

https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Graphics_pipeline
https://en.wikipedia.org/wiki/Comparison_of_display_technology
https://en.wikipedia.org/wiki/List_of_video_connectors
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Tiled_rendering
https://en.wikipedia.org/wiki/Multiple_buffering

%Graphics hardware illustrations attributions

YV VvV V VY VYV VvV VvV VVvYY

ATI Hercules Card 1986: Jorgen Nixdorf, CC BY-SA 3.0

Intel Skylake 14nm: Fritzchens Fritz, CC0O 1.0

TN display closeup 300X: Akpch, CC BY-SA 3.0

LCD monitor screen image: Koperczak, CC BY-SA 3.0

CRT color enhanced unlabeled: Grm_wnr, CC BY-SA 3.0

Dell TFT LCD: Szasz-Revai Endre, CC BY 2.5

CeBIT 2011 3D Passport system: Bin im Garten, CC BY-SA 3.0
Bouquin électronique iLiad en plein soleil: Mathieu Despont, public domain
Kindle 3 E Ink screen: HorsePunchKid, CC BY-SA 3.0

DP to DVI converter unmounted: Antifumo, CC BY-SA 3.0
Anisotropic filtering: Thomas, Lampak, CC BY-SA 3.0

MipMap Example STS101: Mike Hicks, NASA, CC BY-SA 3.0
Big Bug Bunny: Blender Foundation, CC BY 3.0

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. con

113/212

https://commons.wikimedia.org/wiki/File:ATI_Hercules_Card_1986.xcf
https://commons.wikimedia.org/wiki/File:Intel@14nm@@Skylake@Skylake-X(LCC)@i7-7820X@SR3L5_DSC00646_(25952474218).jpg
https://commons.wikimedia.org/wiki/File:TN_display_closeup_300X.jpg
https://commons.wikimedia.org/wiki/File:LCDmonitorscreenimage.jpg
https://commons.wikimedia.org/wiki/File:CRT_color_enhanced_unlabeled.png
https://commons.wikimedia.org/wiki/File:Wiki_dell_lcd.jpg
https://commons.wikimedia.org/wiki/File:CeBIT_2011_Samstag_PD_115.JPG
https://commons.wikimedia.org/wiki/File:Bouquin_%C3%A9lectronique_iLiad_en_plein_soleil.jpg
https://commons.wikimedia.org/wiki/File:Kindle_3_texture_(crop).jpg
https://commons.wikimedia.org/wiki/File:DP_to_DVI_converter_unmounted.jpg
https://commons.wikimedia.org/wiki/File:Anisotropic_filtering_en.png
https://commons.wikimedia.org/wiki/File:MipMap_Example_STS101.jpg
https://peach.blender.org/

Software Aspects

bootlin

Software Aspects

© Copyright 2004-2024, Bootlin. . . .
Crentive Commons BY.SA 3.0 license embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/212

a Software Aspects
o)

o%e]

Display Stack Overview

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/212

ao System-agnostic overview: kernel
o0

o%e]

The kernel provides access to the hardware from userspace
Handles clocks, power, register access, interrupts, etc

Coordinates memory management with the rest of the system
Exposes features to userspace through hardware-agnostic interfaces
or at least, as much as possible

Three aspects are usually involved:

display: from framebuffer to encoder
render: GPU and/or 2D accelerators
input: keyboard, mouse and other devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/212

ao System-agnostic overview: display userspace
o0

o%e]

The kernel provides exclusive access to display hardware

Many applications need to show their buffers concurrently
The display server is in charge of coordinating between applications:

Part of the core of the system, privileged

Applications (via libraries) contact the server to display pixel buffers
Dispatches input events to the concerned applications

Only the display server deals with the kernel display and input APIs

The compositor merges pixel buffers from applications into the final buffer
The window manager defines stacking order, focus, decorations, etc
Both can be part of the display server or distinct components

Serious security concerns: |/O isolation for applications, server privileges

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/212

%System—agnostic overview: display userspace (illustrated)

GNOME-Shell (green) displaying the Lollipop (green) with
top-bar and background window decorations (red)

GNOME-Terminal (green) with The composited result
window decorations (red)

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/212

a@ System-agnostic overview: render userspace
o0

o%e]

Graphics applications and libraries need to render visual elements

Rendering can be a major performance bottleneck
The system often provides accelerated 2D primitives:
Either in the display server
Either in dedicated libraries
Their implementation can take different forms:

Using dedicated 2D hardware

Using 3D hardware in 2D setups (z=0)

Using specific efficient CPU instructions (SIMD)
Using optimized generic algorithms

3D rendering comes with its own interfaces and libraries

Usually with generic interfaces and hardware-specific implementations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/212

ao System-agnostic overview (illustrated)
o0

Applications

/

Graphics libraries

v

Window > 2D render
Manager Display library 3D render
] Server 2D render ' library
Compositor Crimitives [T >

User space
Kernel space

Y
mput] [Dispiay]

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 120/212

a Linux kernel overview
o)

o%e]

Input subsystem

Supports devices such as mice, keyboards, joysticks, touchscreens
Legacy (unused) interfaces for keyboard, mice
Unified evdev event interface to simplify userspace

Framebuffer device (fbdev) subsystem
Legacy interface for displaying pixel buffers on-screen

Very limited pipeline configuration, no hotplug support
Extended features added through driver-specific interfaces
Direct Rendering Manager (DRM) subsystem
Unified display configuration interface: Kernel Mode Setting (KMS or DRM mode)
Allows synchronizing changes together (DRM atomic)
Exposes render devices through driver-specific interfaces (DRM render)
Mostly for 3D rendering with GPUs, but a few 2D devices too
Provides memory management mechanisms (DRM GEM)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

121/212

a@ Linux-compatible low-level userspace overview
o0

o%e]

Input low-level libraries

libevdev (C): Wrapper for evdev interface system calls

libinput (C): Input device management, abstraction and quirks, using libevdev
Display/render low-level interface library

libdrm (C): Wrapper for DRM system calls
2D render low-level libraries

Pixman (C): Optimized pixel-level operations

Cairo (C): Optimized vector drawing (can use 3D)

Skia (C): Optimized vector drawing from Google (can use 3D)
Clutter (C++): Accelerated Ul animation (using 3D)

3D render low-level libraries

Mesa 3D (C): Reference free software OpenGL implementation
Proprietary vendor implementations for specific hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/212

a X Window overview
o)

o%e]

X Window overview
X Window/X11 is the historical (and legacy) display protocol
Complemented by numerous protocol extensions for extra features
X.org is the reference X11 server implementation
Needs an external window manager to handle multiple applications
Composition by the server or the window manager (Composite extension)
Window manager implementations examples
Mutter: GNOME accelerated compositing window manager
i3: Popular tiling window manager
Compiz: Popular 3D-enabled compositing window manager

Display client libraries

Xlib (C): The legacy X11 client-side protocol library helper
XCB (C): The updated X11 client-side protocol library helper
Integrated in most higher-level graphics-oriented libraries

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/212

a Wayland overview
o)

o%e]

Wayland overview
Wayland is a display protocol (with a core and extensions), not an implementation
Replaces X11 with a less intrusive, more modern and minimal paradigm
Compositors (server-side) handle input, windows, composition and display
Wayland compositor implementations examples
Using the libwayland-server base protocol library
Weston/libweston: Reference implementation
Sway /wlroots: Tiling window manager and base library
Mutter: GNOME compositor
Display client libraries
Using the libwayland-client base protocol library
Integrated in many higher-level graphics-oriented libraries

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/212

ao High-level graphics libraries and desktop environments overview
o0

o%e]

Applications rarely to never use Wayland or X11 directly NY ;

Drawing and managing a user interface is complex .c
. Widely-used high-level graphics libraries (aka toolkits) GNOME"
‘ GTK (C): Widget-based Ul toolkit, drawing helpers (GDK)

Qt (C++): Widget-based Ul toolkit, wide framework

EFL (C): Lightweight Ul and application library

SDL (C): Drawing-oriented graphics library (used in games)
A desktop environment groups related libraries and components
gives a consistent look and feel across the system

L X

Desktop environment examples KECE
GNOME: Using GTK, GNOME-Shell desktop
KDE: Using Qt, Plasma desktop ey

SDL , Xfce: Using GTK, lightweight
h Enlightenment: Using EFL

j\v
2

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/212

a Software Aspects
o)

o%e]

TTY Kernel Aspects

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/212

a@ Linux TTY subsystem introduction
o0

o%e]

The TTY subsystem handles teletypewriters to send/receive characters
Source code located at drivers/tty in Linux

Supports physical instances (e.g. UART, RS-232) and virtual ones
Virtual terminals/consoles (VTs/VCs) associate a distinct keyboard and display
Many VTs are created by Linux, available under: /dev/tty=*
Only a single VT is active at a time, switched with Ctrl + Alt + Fi
Display grabbed using fbcon from the fbdev subsystem
Keyboard grabbed using the input subsystem
Can be used to show kernel messages (console=tty1 in the cmdline)
Every program runs under a controlling tty (given by the tty command)

Pseudo-terminals also exist, for software-based 1/0 only

Created by programs (e.g. terminal emulator) under: /dev/pts/*
Unrelated to graphics topics

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/212

4@} Linux TTY (illustrated)

Devuan GNU/Linux 1 owncloud-tech-01 ttyl

owncloud-tech-01 login: _

Getty running on tty1 of a GNU/Linux system

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/212

%Vlrtual terminals and graphics

v

vvyyy

| 2

> With VTs, the kernel is already using the display and keyboard!

Display servers need to switch to graphics mode to release the display:
ret = ioctl(tty_fd, KDSETMODE, KD_GRAPHICS);

And disable keyboard support on the standard input:
ret = ioctl(tty_fd, KDSKBMODE, K_OFF);

The display device can then be used exclusively
Input is no longer interpreted (e.g. Ctrl-C is ignored)
Graphics and keyboard mode must be restored when leaving to keep the VT usable

Current modes can be queried with:

short mode, kbmode;
ret = ioctl(tty_fd, KDGETMODE, &mode);
ret = ioctl(tty_fd, KDGKBMODE, &kbmode);

More details in the console_ioctl man page

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/212

Q}Virtual terminals switching and graphics

v

However, the user might still want to switch VTs!
So the display device must be released/reacquired for VT switching

UNIX signals are used to notify the application, configured with:
struct vt_mode vt_mode = { 0 };

vt_mode.mode = VT_PROCESS;

vt_mode.relsig = SIGUSR1;

vt_mode.acqsig = SIGUSR2;

ret = ioctl(tty_fd, VT_SETMODE, &vt_mode);

VT switching must be acknowledged for the other VT to take over:
ret = ioctl(tty_fd, VT_RELDISP, VT_ACKACQ); /* when entering VT =*/
ret = ioctl(tty_fd, VT_RELDISP, 1); /x when leaving VT %/

Failure to acknowledge will cause a system hang

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/212

a Software Aspects
o)

o%e]

Framebuffer Device Kernel Aspects

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com 3 /212

o%e]

a Fbdev overview
o)

Fbdev is the historical and legacy display subsystem in Linux
Exposes a number of display-related features:

Framebuffer access (pre-allocated for one or two frames)
Operation primitives (bit blit, solid fill, area copy, etc)
Cursor drawing

Power management (blank/unblank, power down)

Initial state can be configured with the video option of the cmdline

Available to userspace via /dev/fb* nodes:

Generic base ioctls with driver-specific additions
Direct framebuffer memory mapping using mmap
Relatively simple and minimalistic interface

Used by the kernel to provide a graphical console with fbcon

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

132/212

Q} Fbdev basic operations

> Fixed information about the display is retrieved with:
struct fb_fix_screeninfo fix_screeninfo = { 0 };
ret = ioctl(fb_fd, FBIOGET_FSCREENINFO, &fix_screeninfo);
» Variable information (including mode) is retrieved and configured with:
struct fb_var_screeninfo var_screeninfo = { 0 };
ret = ioctl(fb_fd, FBIOGET_VSCREENINFO, &var_screeninfo);

ret = ioctl(fb_fd, FBIOPUT_VSCREENINFO, &var_screeninfo);

> Power management is operated with:
ret = ioctl(fb_fd, FBIOBLANK, FB_BLANK_POWERDOWN);
» Double-buffering is sometimes supported (within the same buffer):
var_screeninfo.yoffset = height;
ret = ioctl(fb_fd, FBIOPAN_DISPLAY, &var_screeninfo);
> Blocking until the next vblank is possible with:
int vsync = 0;
ret = ioctl(fb_fd, FBIO_WAITFORVSYNC, &vsync);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/212

a Fbdev limitations
o)

o%e]

Fbdev does not expose or allow configuration of the display pipeline
Output setup is mostly static (provided through the cmdline)
Designed for simple cases (with a single output)

Buffer allocation and management is not available

No possibility of zero-copy import from other devices

Limited page flipping with no associated synchronization mechanism
Insufficient external synchronization interface (blocking wait)

Mixes display, operation primitives and power management

Fbdev is mostly adapted to display from the 1990s and 2000s
please consider avoiding it at all costs!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/212

a Software Aspects
o)

o%e]

DRM Kernel Aspects

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/212

DRM i
Q@ devices

o%e]

UNIX-style devices are identified with major/minor numbers
More details in the makedev manpage, using dev_t type

Minor/major can be retrieved with stat/fstat
DRM major in Linux is 226

Two types of DRM devices exist:

Primary nodes at /dev/dri/card* with minor < 128
Used for display operations with the KMS (mode) interface
Render nodes at /dev/dri/renderD* with minor > 128
Used for render operations with a driver-specific interface

DRM devices can also be used by the kernel directly (internal clients):

fbdev compatibility layer to provide /dev/fb* nodes
Used by fbcon to provide virtual consoles

Userspace needs rights to open device nodes:
Usually allowed via the video group or Access Control Lists (ACLs)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

136/212

4@,‘} DRM driver identification and capabilities

» Driver-specific name and version (major/minor/patchlevel) can be queried:
struct drm_version version = { ... };
ret = ioctl(drm_fd, DRM_IOCTL_VERSION, &version);

> Drivers expose specific capabilities, that can be queried:

struct drm_get_cap get_cap = { 0 };
get_cap.capability = DRM_CAP_DUMB_BUFFER;
ret = ioctl(drm_fd, DRM_IOCTL_GET_CAP, &get_cap);

> The kernel must be informed of client support for some features:

struct drm_set_client_cap client_cap = { 0 };
client_cap.capability = DRM_CLIENT_CAP_UNIVERSAL_PLANES;
client_cap.value = 1;

ret = ioctl(drm_fd, DRM_IOCTL_SET_CLIENT_CAP, &client_cap);

> Driver and client capabilities defined in Linux's include/uapi/drm/drm.h

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/212

https://elixir.bootlin.com/linux/latest/source/include/uapi/drm/drm.h

%DRM master, magic and authentication

>
>
>

Multiple userspace clients can open the same primary device node
Only the master client is allowed to configure display (KMS)

Master is exclusive and can be acquired and dropped (VT switching):
ret = ioctl(drm_fd, DRM_IOCTL_SET_MASTER, NULL);
ret = ioctl(drm_fd, DRM_IOCTL_DROP_MASTER, NULL);
Requires CAP_SYS_ADMIN Linux capability, see capabilities man page
usually reserved to the root super user
Some operations can be allowed on trusted clients with magic authentication:
® Mostly used before render nodes or for allocating buffers on another process
1. Client foo gets its client-specific magic:
struct drm_auth auth = { 0 };
ret = ioctl(drm_fd, DRM_IOCTL_GET_MAGIC, &auth);
2. Client foo sends auth.magic to master client bar (via IPC)
3. Master client bar authenticates client foo:
ret = ioctl(drm_fd, DRM_IOCTL_AUTH_MAGIC, &auth);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/212

o%e]

a@ DRM memory management
o0

The Graphics Execution Manager (GEM) handles memory in DRM
Used both by KMS and render drivers, with specific backends:

CMA: Contiguous Memory Allocator (reserved area at boot)
Shmem: Shared system memory (anonymous pages)
Vram: Video RAM, using the Translation Table Manager (TTM)

Ensures buffers coherency on access (cache management)
Allocated buffers are identified with a unique handle number

In KMS, the dumb buffer APl exposes memory operations:

For memory used for scanout framebuffers
Drivers calculate aligned pitch/stride and size based on dimensions and bpp
Sometimes too limiting (e.g. multi-planar formats)

More details in the drm-memory man page

Drivers sometimes expose extra ioctls for more advanced needs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

139/212

%DRM KMS dumb buffer API

> Allocating from width, height and bpp, returning handle, pitch and size:
struct drm_mode_create_dumb create_dumb = { ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_CREATE_DUMB, &create_dumb);
> Destroying an allocated buffer:
struct drm_mode_destroy_dumb destroy_dumb = { .handle = ..., };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroy_dumb);
> Preparing a mapping in user memory for a buffer, returning an offset:
struct drm_mode_map_dumb map_dumb = { .handle = ..., };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_MAP_DUMB, &map_dumb);
> Mapping memory to userspace using the of fset:
map = mmap(NULL, create_dumb.size, PROT_READ | PROT_WRITE, MAP_SHARED,
drm_fd, map_dumb.offset);
» Unmapping memory after use:
munmap(map, create_dumb.size);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/212

60 DRM FourCCs and modifiers

o%e]

DRM has its own representation of pixel formats, with FourCC codes (on 32 bits)
Defined in the include/uapi/drm/drm_fourcc.h header

They can specify up to 4 distinct data planes for color components

Pixel formats are named "MSB-to-LSB" and specified in little-endian order

LSB comes first in memory in little-endian

For instance, DRM_FORMAT_XRGB8888 has the B byte first in memory

Memory order is independent from the CPU or hardware endianness

A format modifier (on 64 bits) indicates the pixel order in memory
DRM_FORMAT_MOD_LINEAR indicates raster order

line-major left-to-right, top-to-bottom

Other modifiers are usually hardware-specific, often tiled
(e.g. DRM_FORMAT_MOD_VIVANTE_TILED)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/212

https://elixir.bootlin.com/linux/latest/source/include/uapi/drm/drm_fourcc.h

%DRM KMS resources probing

>

>

KMS hardware resources are exposed through the following entities:

® Connectors

Encoders

CRTCs

Planes: primary, overlay and cursor

[J
[J
[J
¢ Framebuffers

Each resource instance is identified with a unique identification number

The list of resource ids is retrieved with:

struct drm_mode_card_res res = { ... };

ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETRESOURCES, &res);
Plane ids (that were introduced later) are retrieved with:

struct drm_mode_get_plane_res res = { ... };

ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETPLANERESOURCES, &res);

Resource ids are used with subsequent resource-specific calls

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/212

4@} DRM KMS connector probing

> The starting point to configure a KMS pipeline is the connector

> Current connector state is probed with:

struct drm_mode_get_connector get_connector = { .connector_id = ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETCONNECTOR, &get_connector);

P> struct drm_mode_get_connector exposes various information:

¢ Connector type and connection state
® Possible encoders, currently-attached encoder
® Available modes and physical monitor size

> Probing modes triggers EDID read: optional and usually quite slow

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/212

%DRM KMS modes

> A display mode is represented as a struct drm_mode_modeinfo in DRM

> Members: clock, [hv]display, [hvlsync_start, [hv]lsync_end, [hv]total and
flags for signal-specific details (polarities)

> Diagram from include/drm/drm_modes. h:

Active Front Sync Back
Region Porch Porch

[1171777777717177777771]
[177177777777717171777 |
LI17777777777777777777 |ooooooooioioioe

<—---- Lhvldisplay ----- >
<=mmmmmmmmme - Chvlsync_start ------------ >
Smmmmmmm oo [hvlsync_end ---------=-=-=-—-—-——- >

Smmm oo [hv]total ---------=———————— - >k

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/212

https://elixir.bootlin.com/linux/latest/source/include/drm/drm_modes.h

4@} DRM KMS encoder probing

v

The next step is to find which CRTC id can be used with the connector
The encoder is the link between the connector and CRTC

Current encoder state can be probed with:

struct drm_mode_get_encoder get_encoder = { .encoder_id = ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETENCODER, &get_encoder);

struct drm_mode_get_connector exposes some information:

¢ Encoder type
® Possible CRTCs, currently-attached CRTC

This allows selecting the CRTC to use for the connector!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/212

4@} DRM KMS framebuffer management

>

vvyYyy

Framebuffers in DRM are described with a number of parameters:

® Picture-wide: width, height, pixel_format
¢ Plane-specific: GEM handle, pitch, offset and modifier

Up to 4 memory planes are supported (depending on the format)
Allows supporting a wide range of possible configurations
Flags are passed to indicate that modifiers or interlaced scan are used

Framebuffers are registered from their parameters, returning a fb_id:

struct drm_mode_fb_cmd2 fb_cmd2 = { ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_ADDFB2, &fb_cmd2);

They are destroyed using the fb_id:

unsigned int fb_id = fb_cmd2.fb_id;
ret = ioctl(drm_fd, DRM_IOCTL_MODE_RMFB, &fb_id);

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. com 146/212

ao DRM KMS CRTC configuration (legacy)

Jo3e!

The pipeline can then be configured with the connector and the CRTC

The current CRTC configuration can be retrieved with:

struct drm_mode_crtc crtc = { .crtc_id = ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETCRTC, &crtc);

The CRTC is configured with the connector id

struct drm_mode_crtc crtc = { .crtc_id = ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_SETCRTC, &crtc);

A mode and a framebuffer can be set (previous setup used otherwise)
mandatory if the CRTC was unused before

The kernel will automatically select the best encoder for the connector and CRTC

Legacy and deprecated way to do modesetting: only concerns the primary plane

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/212

60 DRM KMS page flipping (legacy)

o%e]

Page flipping is the action of switching the CRTC to another framebuffer
only concerns the primary plane

An event can be requested when the flip happens

Can be scheduled at different times (specified with flags):

At a specified vblank target (absolute or relative) to avoid tearing
As soon as possible (asynchronously) if supported

struct drm_mode_crtc_page_flip page_flip = { .crtc_id = ..., .fb_id = ... 3};
ret = ioctl(drm_fd, DRM_IOCTL_MODE_PAGE_FLIP, &page_flip);

Legacy and deprecated: limited to the primary plane

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/212

4@3 DRM KMS overlay plane configuration (legacy)

> Overlay planes are configured separately from the CRTC main plane

> The current state of a plane can be retrieved with:
struct drm_mode_get_plane get_plane = { .plane_id = ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETPLANE, &get_plane);
> Provides possible CRTCs, current framebuffer and supported formats
> Planes are configured with source and destination parameters:
¢ crtc_[xywh]: On-CRTC position and dimensions
® src_[xywh]: In-framebuffer position and dimensions (source clipping area)
> Configuration takes place with:
struct drm_mode_set_plane set_plane = { .plane_id = ... };
ret = ioctl(drm_fd, DRM_IOCTL_MODE_SETPLANE, &set_plane);

> Legacy and deprecated: not synchronized to vblank or page flip

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/212

%DRM KMS cursor configuration and position (legacy)

| 2

Cursor planes have a separate dedicated legacy API

Configured per-CRTC with a GEM handle and dimensions (width, height)
a zero GEM handle deconfigures and removes the cursor

Only supports the DRM_FORMAT_ARGB8888 format (not configurable)

Using a single ioctl with the flags field for the operation

struct drm_mode_cursor cursor = { .flags = DRM_MODE_CURSOR_BO,
.crtc_id = ...3};

ret = ioctl(drm_fd, DRM_IOCTL_MODE_CURSOR, &cursor);

Once configured, the cursor can be moved to x, y on-CRTC coordinates

struct drm_mode_cursor cursor = { .flags = DRM_MODE_CURSOR_MOVE,
.crtc_id = ... 3};

ret = ioctl(drm_fd, DRM_IOCTL_MODE_CURSOR, &cursor);

DRM_IOCTL_MODE_CURSOR?2 variant provides cursor hotspot for virtual machines

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. com 150/212

ao DRM event notification and wait
o0

Jo3e!

DRM provides an event notification mechanism for vblank and page flip done
Available through the primary (KMS) file descriptor

Can be used with poll and select (integrated in main loop)

Events with a struct drm_event base are read using read

Expand to struct drm_event_vblank for vblank and page flip done events
only complete events are returned, so the buffer must be large enough

Events can be requested at page flip time or explicitly:

union drm_wait_vblank wait_vblank = { .request = ... };

ret = ioctl(drm_fd, DRM_IOCTL_WAIT_VBLANK, &wait_vblank);

A blocking wait for an absolute or relative vblank sequence can also be requested
using the same ioctl and dedicated request.type values

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/212

4@} DRM KMS object properties

» KMS objects expose generic (or driver-specific) properties with names and values
concerns connectors, CRTCs and planes

* Range properties: limits for the value (signed or unsigned)
® Enum properties: fixed values with associated names for the values
¢ Blob properties: raw data with a given length
> Properties have a unique identifier across objects, details can be queried:
struct drm_mode_obj_get_property get_property = { .prop_id = ... }
ret = ioctl(drm_fd, DRM_IOCTL_MODE_GETPROPERTY, &get_property);
> Registered properties of an object can be retrieved using:
struct drm_mode_obj_get_properties get_properties = { .obj_id = ... }
ret = ioctl(drm_fd, DRM_IOCTL_MODE_OBJ_GETPROPERTIES, &get_properties);
> The value of a property can be assigned with:
struct drm_mode_obj_set_property set_property = { .obj_id = ..., .prop_id = ... }
ret = ioctl(drm_fd, DRM_IOCTL_MODE_OBJ_SETPROPERTY, &set_property);

> Blob properties need to be created and destroyed (with their own identifier)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/212

60 DRM KMS atomic

o%e]

The legacy APl comes with major design issues:
Overlay and cursor plane updates are applied instantly (tearing)
Plane updates cannot be synchronized together (intermediate states)
No way to check that setup is valid before applying it

The atomic API lifts these restrictions with a new paradigm:
Objects are configured based on their KMS properties
values are affected to each changed property
Property changes of different objects are grouped in an atomic commit
Planes are handled regardless of their type (primary, overlay, cursor)
Commits can be marked for test only: checked but not applied
Changes are applied at next vblank, unless marked asynchronous

struct drm_mode_atomic atomic = { ... }

ret = ioctl(drm_fd, DRM_IOCTL_MODE_ATOMIC, &atomic);

Unless marked non-blocking, the ioctl returns when changes are applied
A page flip event can also be requested

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/212

60 DRM KMS atomic common properties

o%e]

Common properties used to configure connectors:

CRTC_ID: id of the CRTC to bind with the connector
Common properties used to configure CRTCs:

ACTIVE: whether the CRTC is in use

MODE_ID: id of the property blob with the struct drm_mode_modeinfo mode
Common properties used to configure planes:

FB_ID: id of the framebuffer to bind with the plane

CRTC_ID: id of the CRTC to bind with the plane

CRTC_[XYWH]: on-CRTC position and dimensions of the plane
SRC_LXYWH]: in-framebuffer position and dimensions (source clipping area)

Common properties used to probe planes:

TYPE: type of the plane (primary/overlay/cursor)
IN_FORMATS: list of supported formats/modifiers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/212

4@} DRM KMS atomic driver walkthrough

> A state-of-the-art DRM KMS driver: vc4 at drivers/gpu/drm/vc4/
integrates both DRM KMS and render

> Entry point at drivers/gpu/drm/vc4/vc4_drv.c
» Dedicated documentation:
https://dri.freedesktop.org/docs/drm/gpu/vc4.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

155/212

https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/vc4/
https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/vc4/vc4_drv.c
https://dri.freedesktop.org/docs/drm/gpu/vc4.html

a DRM render generalities
o)

o%e]

DRM render drivers have their own driver-specific API
unlike KMS, render hardware abstraction is done in userspace

Their APl is exposed through custom ioctls
Can be associated with a KMS driver (e.g. vc4) or separate (e.g. v3d)
Drivers handle memory, job submission and scheduling, interrupts

DRM has a common scheduler (from AMD) in drivers/gpu/drm/scheduler/
Usual operations:

Managing buffer objects (BOs) of different types (create, destroy, mmap)

using GEM under the hood

Submitting job data structures for programming the GPU (command lists)

with a validation step to ensure its validity

Waiting for operations to complete

Exposing performance-related information

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/212

https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/scheduler/

4@,? DRM render driver walkthrough

> A state-of-the-art DRM render driver: v3d at drivers/gpu/drm/v3d/

> Entry point at drivers/gpu/drm/v3d/v3d_drv.c

> Dedicated documentation:
https://dri.freedesktop.org/docs/drm/gpu/v3d.html

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

157/212

https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/v3d/
https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/v3d/v3d_drv.c
https://dri.freedesktop.org/docs/drm/gpu/v3d.html

4@,? DRM Prime zero-copy memory sharing (dma-buf)

>

Memory buffers often need to be shared between different devices
e.g. DRM KMS and DRM render but also concerns VV4L2 for media devices

The kernel-wide dma-buf API allows exporting and importing buffers
Buffers are represented as file descriptors in userspace

file descriptors can be shared between programs via IPC

DRM exposes dma-buf via the DRM Prime API

DRM prime exports a GEM handle to a returned fd:

struct drm_prime_handle prime_handle = { .handle = ... }

ret = ioctl(drm_fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &prime_handle);
And vice-versa:

struct drm_prime_handle prime_handle = { .fd = ... }
ret = ioctl(drm_fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &prime_handle);

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. com 158/212

a@ DRM sync object fencing

o%e]

In a multi-device pipeline with zero-copy, only scheduling is left to userspace
each device signals completion and userspace moves on to the next
Fences were introduced to avoid the extra roundtrip in userspace:

The flow of buffers between devices is usually known in advance
The kernel can coordinate internally and trigger the next device
Requires submitting all commands in advance with fences attached

DRM exposes fences via the Sync object API
Sync objects contain one fence, exposed as a file descriptor
The KMS atomic APl and some render driver APIs take input fence fds

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/212

4% DRM sync object fencing

> Sync objects are created and destroyed with a handle:

struct drm_syncobj_create syncobj_create = { 0 }
ret = ioctl(drm_fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);

struct drm_syncobj_destroy syncobj_destroy = { .handle = syncobj_create.handle }
ret = ioctl(drm_fd, DRM_IOCTL_SYNCOBJ_DESTROQY, &syncobj_destroy);
> An output fence's fd is exported from a device's sync object with:
struct drm_syncobj_handle syncobj_handle = { .handle = handle, ... }
ret = ioctl(drm_fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &syncobj_handle);
> An input fence's fd is imported to a device's sync object with:
struct drm_syncobj_handle syncobj_handle = { .handle = handle, .fd = fd }
ret = ioctl(drm_fd, DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE, &syncobj_handle);

> Quite a recent feature, not yet available in V4L2 (media)

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/212

60 DRM debug and documentation

Jo3e!

Debug message using the drm.debug kernel cmdline argument:

Detailed in the include/drm/drm_print.h header

drm.debug=0x17 for core, KMS, driver and atomic debug messages
Current state debug in debugfs: cat /sys/kernel/debug/dri/@0/state
Drivers expose specific debugfs entries

Debug utility: modetest from libdrm
Community contact:

Mailing list: dri-devel@lists.freedesktop.org

IRC channel: #dri-devel on the OFTC network
Documentation resources:

Linux GPU Driver Developer’s Guide:

https://www.kernel.org/doc/html/latest/gpu/index.html
Man pages about userspace aspects: drm, drm-kms, drm-memory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/212

https://elixir.bootlin.com/linux/latest/source/include/drm/drm_print.h
https://www.kernel.org/doc/html/latest/gpu/index.html

a Software Aspects
o)

o%e]

DRM Userspace Aspects

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com g2 /212

4% libdrm wrapper

> Userspace access to DRM devices is wrapped with libdrm
> Exposes convenience wrappers, helpers and some data structures around ioctls
¢ For KMS support in the 1ibdrm.so library
® For hardware-specific render drivers in dedicated libraries (e.g. 1ibdrm_nouveau.so)
> Used by almost every userspace project dealing with DRM:
weston, mutter, Xorg, mesa, etc

Process
User space

Kernel space

specific driver API generic DRM API (including GEM & KMS API)

¢ DRM
core

DRM driver GEM KMS

Video Card

framebuffer

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

163/212

a Software Aspects
o)

o%e]

X Window Userspace Aspects

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com 164, /212

a X11 protocol and architecture
o)
X11 core protocol implemented by Xorg:

Asynchronous packet-based system with different types:
Request, Reply, Event and Error packets
Can be used locally (UNIX socket) or over network (TCP/IP)

Exposes drawables for clients to transfer or draw pixel data to the server:
Windows: area of the display buffer owned by the application
without backing storage, must be redrawn when occluded
Pixmaps: off-display backing storage that can be copied to windows
Windows are represented as a tree:
Starting with the root window created by X
Top-level windows and sub-windows created by clients
A graphics context (GC) allows requesting basic drawing and font rendering
The server provides input events to concerned clients:

Mouse movements relative to window coordinates
Translated key symbols a from raw keycodes

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/212

a X11 protocol extensions
o)

o%e]

X11 has evolved over time through extensions to its main protocol
Additional interfaces for X clients, matching new hardware features

XKB: complex keyboard layouts
Xinput2: touchpad, touchscreen and multi-touch support

XSHM: shared client/server memory, avoiding extra transfers/copies
not possible to operate via the network

XRandR: monitor configuration and hotplugging without server restart
Composite: delegates window composition to compositing window managers
XRender: 2D rendering API with with alpha composition, rasterization,
transformations, filtering

Xv: video output format conversion and scaling offload in-DDX
involves buffer copies and lacks synchronization with window position

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/212

a@ Xorg architecture and acceleration
o0

o%e]

Xorg is divided between generic and hardware-specific parts
Device-Independent-X (DIX) concerns:

X11 protocol implementation, client coordination

Main event loop and event dispatching

Graphics operations logic, boilerplate and fallback implementations
Device-Dependent-X (DDX) concerns:

Input drivers (xf86-input-...) to grab events from the kernel

Video drivers (xf86-video-...) to provide mode setting and 2D acceleration
EXA provides a 2D acceleration architecture between DIX and DDX

Efficient way for drivers to expose accelerated 2D operation primitives
Replaced the XFree86 Acceleration Architecture (XAA)
Reduces driver boilerplate

Glamor provides 2D acceleration for the DDX using OpenGL 3D rendering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/212

a Xorg drivers overview
o)
Generic Xorg input drivers:
xf86-input-libinput: using libinput to get input events
xf86-input-evdev: using the evdev kernel interface directly (deprecated)
Specific Xorg input drivers:
xf86-1input-synaptics: for laptop touchpads
xf86-1input-wacom: for Wacom drawing tablets
Specific drivers are deprecated in favor of xf86-input-libinput
Generic Xorg display drivers:

xf86-video-modesetting: for DRM KMS, can be accelerated using glamor
xf86-video-fbdev: for the fbdev interface, without acceleration (legacy)
xf86-video-vesa: for the Video BIOS Extension (VBE) framebuffer (x86)

Specific Xorg display drivers:
xf86-video-[intel, nouveau, amdgpul: profiting from 2D acceleration blocks

Specific drivers are deprecated in favor of xf86-video-modesetting and glamor
the trend is to accelerate everything via 3D rendering instead of 2D accelerators

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

168/212

o%e]

ao X11 and OpenGL acceleration: GLX and DRI2

Before DRM render nodes, there was a single device for KMS and render
correlates with the idea of a graphics card mixing both aspects

The X server owns the graphics device exclusively

Clients using OpenGL need to access the device for rendering

The GLX API was introduced to perform indirect rendering;:
Integrating OpenGL with the X Window API
Forwarding GL calls to the GL implementation via the X server (AIGLX)
introducing latency and performance issues

The Direct Rendering Infrastructure (DRI/DRI2) was introduced next

The X server allowed access through DRM magic/auth

Buffers were shared via GEM flinks

Now using the standalone render node and dma-buf instead

Still in place for coordination between render and the display server

GLX remained as a GL windowing API for X11 (deprecated by EGL)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

169/212

Direct Rendering Infrastructure Data Flow

X11 and OpenGL acceleration: GLX and DRI2 (illustrated)

3D Direct Rendering Program 30 Indirect Rendeting Program
Direct % Protocol X Protocol Open GL
Rendering Encode Encode Encode
(3D Data) (2D Data) (2D Data (3D Data)
20 Data 2D & 3D Data
[Protocol Decode
| 720 . Data ——__3D'
3D Data [DX GLX
| | |
[Hak Mesa
| [|
[DDX Driver
|
20 Data

Graphics Hardware

Data flow in X11 for different types of clients

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

170/212

ao Xorg usage, integration and configuration
0% »d
Xorg can be started with the startx command (wrapping xinit)
Executes server script from /etc/X11/xinit/xserverrc or $HOME/.xserverrc
Executes client script from /etc/X11/xinit/xinitrc or $HOME/ . xinitrc
An X display manager offers a login interface (e.g. KDM, LightDM)
Runs under a Xorg server, with its own dedicated user
Starts Xorg for authenticated users from session files in /usr/share/xsessions/
Used to require running the server as root to access graphics devices
in particular, necessary to become DRM master

The systemd-logind login manager lifts the restriction
Opens the DRM KMS fd privileged and passes it to Xorg via IPC
Xorg can then drop privileges: details in the Xorg.wrap man page

Xorg is configured (both DIX and DDX) from /etc/X11/xorg.conf

The DISPLAY environment variable indicates which server connection to use

Already set for X client applications and inherited
export DISPLAY=:0 useful to launch programs from other TTYs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

171/212

o%e]

X Client X Client

X server Compositor

»
AN

® \®

\

A
KMS evdev
Kernel

ao Xorg architecture: input to display roundtrip
o0

An input event is read from the
kernel by the server

The affected client is determined and
receives the event

The client changes something and
issues a rendering request

The server performs rendering (DDX)
and notifies the compositor

The compositor updates the damaged
regions in the back-buffer

The server updates the display buffer
from the compositor buffer (page flip)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

172/212

ao Major issues with X11

The X11 core protocol and paradigm soon caused various issues:
Based on buffer copies, transfers and frequent redraws
solved with XSHM and DRI2 extensions
Immediate-mode drawing, with intermediate states scanned out
solved by drawing everything client-side instead
Lack of synchronization /feedback interface
specified with the DRI3 and Present extensions
Everything's a window with X... but not in practice (screensavers, popups)
specified with the DRI3 and Present extensions
Heavy packet-based protocol causing latency issues
Security concerns regarding client input/output isolation

Because the core protocol did not evolve, extensions proliferated:

Complicated server aspects got delegated through extensions
Working around major design issues, not solving them in depth
In the end, the server mostly coordinates between other components

Client-side rendering became more common (raster, operations, fonts, etc)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/212

%Xorg code structure and walkthrough

> Xorg source code available at: https://gitlab.freedesktop.org/xorg/xserver
» DDX components:

® Code specific to the Linux kernel under: hw/xfree86/os-support/linux/
¢ Modesetting DRM KMS driver under: hw/xfree86/drivers/modesetting/
¢ fbdev core library under: hw/xfree86/fbdevhw/

¢ Glamor implementation under: glamor/

> DIX components:

® System-level helpers under: os/
® Common framebuffer operations abstraction under: fb/
® EXA abstraction under: exa/

> DRI2 components:

¢ DRI2 common code under: hw/xfree86/dri2
® Modesetting DRI2 glue under: hw/xfree86/drivers/modesetting/dri2.c
® GLX support under: glx/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/212

https://gitlab.freedesktop.org/xorg/xserver

ao Xorg debug and documentation

o%e]

Xorg has a logging system for all its components:
Written to a file at /var/log/Xorg.0.log, -logfile option
Verbosity can be set with the -logverbose option (log level)
Printed on the standard output (stdout)
Xorg can be bound to any VT with the vt command line option
useful for remote debugging, with a virtual controlling terminal
Community contact:
Mailing list: xorg@lists.freedesktop.org
IRC channel: #xorg and #xorg-devel on the OFTC network
Documentation resources:
Online wiki of the project: https://www.x.org/wiki/Documentation/

Man pages: X, Xserver, Xorg, xorg.conf, xinit and more!
Extensions specification documents

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

175/212

https://www.x.org/wiki/Documentation/

a Software Aspects
o)

o%e]

Wayland Userspace Aspects

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/212

ao Wayland overview and paradigm

o%e]

Wayland was started in 2008 as a modern replacement for the X Window system
solving issues in-depth with a clean implementation from scratch
Drastic simplification of the stack and paradigm shift:
The server and compositor are unified as the same component
Clients are expected to do all the rendering
Buffers are shared between client and server, no transfers
Window decorations can be added by the client or the server
Improves security aspects:
Isolates the input and output of each client
Only the compositor can access display buffers (and provide screenshots)
Avoids running the compositor as root (using systemd-1logind)
No network support (can be implemented by compositors)

Weston is the reference Wayland compositor

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/212

o%e]

Wayland Client

Wayland
Compositor

N
\
™

KMS evdev
Kernel

ao Wayland architecture: input to display roundtrip

An input event is read from the
kernel by the compositor

The affected client is determined and
receives the event

The client changes something,
performs rendering and notifies the
compositor

The compositor updates the damaged
regions in the back-buffer and
performs page flip

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

178/212

a@ Wayland protocol and architecture
o0

Wayland provides a client-server low-level API:

Wayland display connections happen through local IPC

Display is identified with the WAYLAND_DISPLAY environment variable

Asynchronous and object-oriented protocol

Objects represent resources from the compositor

Objects implement specific interfaces, with requests and events
Requests are messages sent by the client,
Events are messages received from the server
errors are only specific types of events

Some implementation details:

IPC is a regular UNIX socket (allows passing file descriptors for zero-copy)
A proxy provides client-side object representations and message translation
Messages are serialized (marshalling) to the wire format

Messages are buffered and flushed /dispatched when asked

Client-server protocol is implemented in libwayland-client and libwayland-server

These libraries do not provide any interface implementation

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

179/212

a@ Wayland core protocol: global object interfaces
o0

o%e]

Global core object interfaces:

wl_display: manages server connection, exposes the registry
wl_registry: exposes available global object interfaces

wl_output: describes the output properties (mode, geometry)
wl_seat: exposes input device object capabilities and interfaces
wl_compositor: provides surfaces and regions for composition
wl_subcompositor: provides sub-surfaces for in-surface compositing
wl_shm: exposes a shared memory interface
wl_data_device_manager: support for copy/paste between clients

Global object interfaces are bound with the registry before use

Using global struct wl_interface definitions
wl_registry_bind returns a pointer to a proxy object

Global objects give access to other specific objects

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/212

a@ Wayland core protocol: specific object interfaces
&\ 4

Input-related (wl_seat) specific core object interfaces:
wl_pointer: exposes mice events and cursor
wl_keyboard: exposes keyboard events and information
wl_touch: exposes touchscreen events
Compositor-related (wl_compositor) specific core object interfaces:

wl_region: specifies any area
wl_surface: rectangular on-screen pixel area

contents set to a wl_buffer (can be transformed)
configured with a wl_region for input

configured with a wl_region for area-based opacity
updated with buffer damage regions

wl_subsurface: converts wl_surface objects to positioned sub-surfaces
Shared memory-related (wl_shm) specific core object interfaces:
wl_shm_pool: allows creating shared-memory buffers
Memory-related specific core object interfaces:
wl_buffer: generic object for a wl_surface

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

181/212

a Wayland extra protocols
o)

o%e]

Extra protocols (object interfaces) can be exposed by the compositor
Protocols (including the core) are described as XML files
The wayland-scanner tool produces client and server C code and headers
Accepted additional protocol descriptions are available at:
https://gitlab.freedesktop.org/wayland/wayland-protocols
Some are considered stable and many unstable
Some widely-used protocol extensions:
XDG-Shell: desktop shell integration
Turns wl_surfaces to xdg_surfaces that can be resized, minimized, etc
Provides a popup/menu interface with xdg_popup
IVI-Shell: In-vehicle shell with surface layers
Presentation time: Precise timing and event feedback

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

182/212

https://gitlab.freedesktop.org/wayland/wayland-protocols

ao Wayland OpenGL integration

Jo3e!

Wayland supports EGL for windowing integration with OpenGL

eglGetDisplay is called with a struct wl_display
mesa’s _eglNativePlatformDetectNativeDisplay figures it out

Mesa 3D implements Wayland EGL interface for OpenGL integration

Needs to implement DRI2 for DRM authentication

wl_drm interface between the wayland EGL client and the compositor
Both sides are actually implemented in mesa

The interface is bound to the compositor with eglBindWaylandDisplayWL
using the compositor’s EGL context as entry-point to mesa

Allows sharing DRM GEM buffers with the compositor

Regular wl_surfaces can be bound to EGL:

Converted to a wl_egl_window with wl_egl_window_create
Then converted to an EGLSurface with eglCreateWindowSurface

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/212

Wayland OpenGL integration (illustrated)

by Shouel Csaba Otto Traian; GNU FOL 1,20 and CC-8Y-SA 3,00} created 2013-08-28; updated 2014-02-27

Uibwaytand-EL @

OpenGLIES

Graphics device drivers

LibDRM

Kernel

CPU & main memory’
USB, PS/2, ... GPU & graphic memory

Wayland integration with EGL

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/212

ao Wayland status and adoption
o0

o%e]

Wayland is now quite mature, robust, efficient and widely used
Most toolkits have support for it: GTK 3, Qt 5, SDL, EFL
Major desktop environments support it: GNOME 3, KDE Plasma 5
Integrated sessions with login managers from /usr/share/wayland-sessions
Runs with user privileges with systemd-1logind

X11 applications can be integrated using XWayland
X server implementation registered as a Wayland client

Wayland composer acts as X compositing window manager
Creates a wl_surface for each window, redirects input/output

Diverse compositor implementations have emerged

Sometimes tied to a desktop environment: mutter, kwin

libinput was created to help with input aspects

libweston emerged from the Weston compositor core

wlroots emerged from the Sway compositor core

Support DRM KMS display, EGL rendering (pixman supported by libweston)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/212

. Wayland stack overview (illustrated

by Shnuel Csaba Otto Traian; GNU FDL 1.3+ and CC-BY-SA 4.0 International; created 2014-03-23; modified by Matthew Raymond and others; last modified 2017-12-18

libwayland-
client

libwayland-server rendering

Weston, Mutter, KWin, Enlightenment, ...
Free and open-source
Wayland Window

. . user mode graphics drivers
Management (wwi) X Window Manager (XWM)

Ubinput APT
libinput

pointer acceleration devic

. ibDRM
Kernel node

LibX or LibXCB

Vulkan /
OpenGL 4.5 /
OpenGL ES 3.2

rendering
Vulkan /

OpenGL 4.6 /
OpenGL ES 3.2

Proprietary
user mode graphics drivers

AMDGPU-PRO Only

USB, PS/2, ... Display controller

proprietary BLOB

CPU & main memory
GPU & graphic memory

The graphics stack with Wayland

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

186/212

60 Wayland debug and documentation

Debugging tips:
Supported global object interfaces can be listed with weston-info
The WAYLAND_DEBUG environment variable enables protocol tracing

Weston debugging;:
Debug arguments: --debug, --log=file.log
Grabbing a different TTY argument: --tty 1
Wireframe keystroke: mod + shift + space + F
Timeline recording (to a JSON file) keystroke: mod + shift + space + d
can produce a graph with https://github.com/ppaalanen/wesgr

Community contact:
Mailing list: wayland-devel@lists.freedesktop.org
IRC channel: #wayland on the OFTC network

Documentation resources:
Online wiki of the project: https://wayland. freedesktop.org/
Online documentation: https://wayland.freedesktop.org/docs/html/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

187/212

https://github.com/ppaalanen/wesgr
https://wayland.freedesktop.org/
https://wayland.freedesktop.org/docs/html/

a Software Aspects
o)

o%e]

Mesa 3D Userspace Aspects

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/212

%Standardized 3D rendering APIs: OpenGL

penGL.

> 3D rendering API, designed for GPU hardware acceleration

® Generic API but hardware-specific implementations
® Started by Silicon Graphics in 1992, now managed by the Khronos Group

> OpenGL provides a high-level approach to 3D graphics

¢ Compromise between complexity and fine-grained control
© Efficient abstraction, adapted to the hardware
® Leaves most memory management to the implementation

> Stateful and context-based programming model

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/212

%Standardized 3D rendering APIs: OpenGL

penGL.

> OpenGL versions evolved with hardware features
® Version 1 targeted fixed-function pipeline GPUs
® Version 2 and up allow programming vertex and fragment shaders
® More shaders supported with new versions (geometry, tesselation)
» OpenGL comes with the GL Shading Language (GLSL)
® Source code language for OpenGL shaders
¢ C-like syntax with intrinsic functions (e.g. texture access)
¢ Compiled on-the-fly by the GL implementation

> Supports extensions that can be queried, for extra features

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

190/212

%Standardized 3D rendering APls: OpenGL ES and EGL

QrenGLES. EGL.

OpenGL ES was introduced as a simplified version for embedded devices

vy

OpenGL ES versions are loosely following OpenGL versions:

® Version 1 targets fixed-function GPUs
® Version 2 and up target programmable GPUs

v

Uses GLSL shaders and the same programming model as OpenGL
> EGL was introduced as standardized window integration API

® Connects with the native system display server
® Replaces GLX for X11 and adopted as default by Wayland

> Supports extensions that can be queried, for extra platform-specific features

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

191/212

ao Standardized 3D rendering APls: Vulkan

<Vu Kan.

Vulkan is a low-level generic API for GPU access
Started by the Khronos group in 2016 and widely adopted

Suitable for both 3D rendering and compute

Uses Standard Portable Intermediate Representation (SPIR-V) shaders

Unified intermediate representation from (adapted) GLSL/HLSL sources
Compiled with the program instead of on-the-fly (less overhead)
Translated to native GPU operations by implementations

Direct programming model, with low-level memory management

The API provides window system integration (WSI) for many platforms
e.g. for Wayland: vkCreateWaylandSurfaceKHR

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/212

a Mesa 3D overview
o)

o%e]

Mesa is the reference free software 3D graphics implementation
Started back in 1993, evolved with GPU implementations
Project works with the Khronos Group and develops extensions
Implements support for rendering APls:
OpenGL (up to 4.6) and OpenGL ES (up to 3.2)
Vulkan (up to 1.1) with translation to OpenGL via Zink
Direct 3D (version 9 only)
Implements windowing system integration:
EGL for Wayland, X11, Android, native DRM (GBM) and surface-less
Vulkan WSI for Wayland and X11 (XCB/Xlib)
GLX for X11
Also supports other GPU-related features:

Video decoding acceleration via VDPAU, VAAPI, OMX
Compute (GPGPU) support via OpenCL (clover)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/212

ao Mesa 3D implementation highlights

o%e]

Unlike other devices, 3D hardware is abstracted in userspace
3D rendering is a very bad fit for in-kernel abstraction
Kernel drivers are much less complicated than GL implementations
Mesa implements driver-specific DRM render support

Manages memory with the GEM and Prime DRM APIs
Manages DRI2 to allow direct rendering

Virtual drivers are also supported (for virtual machines):
vmwgfx: VMware bridge (proprietary virtual hardware implementation)
virgl: Virtio bridge (standard for Linux and QEMU)

Also provides software backends:

softpipe: Generic reference software renderer
swr: OpenSWR renderer (for x86 by Intel)
llvmpipe: LLVM-based renderer (high-performance)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

194/212

a@ Mesa 3D internals: Gallium 3D

o%e]

Classic mesa drivers have significant code duplication:
API state tracking
Compiler implementation

The Gallium 3D interface splits things up instead:
API State trackers: maintain the current state for the APl in use
Drivers: implement shader compilation and hardware configuration
Winsys: implement low-level kernel interfaces

Gallium drivers implement a pipe interface:
struct pipe_screen: textures, buffers and sync management
struct pipe_state: pipeline configuration and resources state
struct pipe_context: rendering operation functions

Pipe loaders (DRM or software) select the right pipe driver

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

195/212

%Mesa 3D internals: Gallium 3D (illustrated)

by Shmuel Csaba Otto Traian; GNU FDL 1.2+ and CC-BY-SA 3.0+; created 2013-08-26, updated 2013-10-30

API State Tracker

DRI-1.0-style GPU-specific
Device Driver Device Driver

OS WinSys

libDRM libDRM

CPU & registers & & L2 & L3 & L4 & main memory
GPU & registers & L1 & L2 (& graphic memory)

Driver integration in Mesa 3D

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

196/212

a@ Mesa 3D internals: intermediate representations
o0

o%e]

Mesa is in charge of compiling shaders to the native shading ISA
Intermediate representations (IRs) are used for translation

Input-level IRs:

GLSL IR: Internal GLSL shader representation
SPIR-V: Khronos' Standard Portable Intermediate Representation

Internal [Rs:

TGSI IR: Tungsten Graphics Shader Interface representation
NIR: New efficient internal representation for Mesa
Mesa: Historical implementation (deprecated)

External IR:
LLVM IR: Used for LLVM interaction (e.g. with llvmpipe)

Drivers emit native instructions from an internal IR and lowering

Once ready, compiled shaders are submitted to the GPU

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/212

60 Mesa 3D internals: intermediate representations (illustrated)
o0

o%e]

GLSL source

| GLSL IR | | SPIR-V IR |

NIR [€—| TGSl IR

Driver

Shading ISA | | Software | | LLVM IR |

The Mesa 3D internal representation pipeline

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/212

ao Mesa 3D Generic Buffer Management

Jo3e!

Mesa provides a Generic Buffer Management (GBM) interface:
Buffer creation/destruction (supporting modifiers)
Buffer information (bpp, dimensions, planes, stride, modifiers)
Buffer mapping/unmapping
Buffer dma-buf import/unimport
Compatible with the EGL API:
struct gbm_device as EGLNativeDisplayType
struct gbm_surface as EGLNativeWindowType
struct gbm_bo as EGLNativePixmapType

Provided with DRM KMS fd for DRI2 (used internally for most operations)

struct gbm_device *device = gbm_create_device(drm_fd);

Useful when using bare-metal DRM KMS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

199/212

a@ Mesa 3D hardware support status: desktop

o%e]

Updated Mesa per-driver support at https://mesamatrix.net
Intel HD/Iris Graphics

Platforms: Intel only

Mesa driver: 965 (classic), iris (Gallium)

DRM driver: i915

Status: state-of-the art (i965/iris)
Nvidia pre-NV110

Platforms: Tegra, any PCl-e compatible

Mesa driver: nouveau (Gallium)

DRM driver: nouveau

Status: reverse engineered, advanced

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/212

https://mesamatrix.net

a@ Mesa 3D hardware support status: desktop

o%e]

AMD Radeon GCN-ish

Platforms: AMD, any PCl-e compatible
Mesa driver: radeonsi (Gallium)

DRM driver: amdgpu

Status: state-of-the art

AMD Radeon R600+

Platform: AMD, any PCl-e compatible
Driver: r600 (Gallium)

DRM driver: radeon

Status: advanced

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

201/212

o%e]

Qualcomm Adreno
Platforms: Qualcomm Snapdragon
Mesa driver: freedreno (Gallium)
DRM driver: freedreno
Status: reverse engineered, advanced

Vivante GCx000

Platforms: i.MX6, i.MX8, i.MX8M
Driver: etnaviv (Gallium)

DRM driver: etnaviv

Status: vastly usable

a@ Mesa 3D hardware support status:
o0

embedded

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

202/212

a@ Mesa 3D hardware support status: embedded

o%e]

ARM Mali Utgard

Platforms: Exynos, Allwinner, Amlogic
Mesa driver: lima (Gallium)
DRM driver: lima
Status: reverse engineered, usable
ARM Mali Midgard/Bifrost
Platforms: Rockchip, Exynos, Mediatek, Allwinner
Mesa driver: panfrost (Gallium) / PanVK (Vulkan)
DRM driver: panfrost
Status: advanced
Imagination PowerVR Rogue
Platforms: Mediatek
Mesa driver: imagination
DRM driver: imagination
Status: work in progress

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

203/212

a@ Mesa 3D versus proprietary implementations
o0

o%e]

3D support is one of the most challenging parts of hardware integration
Proprietary implementations easily lead to various practical issues:

Lack of support outside of prescribed environments

Lack of specific features or APlIs

Lack of maintenance and updates

No adaptation possibility
Mesa provides a collectively-maintained base

Constantly updated and improved by the community

Easier to manage: works out of the box with distributions

Mesa support is complex and often takes some time to bring performance
especially for drivers based on reverse-engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/212

4@} Mesa 3D code structure and walkthrough

> Mesa source code available at: https://gitlab.freedesktop.org/mesa/mesa

> Gallium 3D components:

® Drivers under: src/gallium/drivers/

® Winsys under: src/gallium/winsys/

® API state trackers under: src/gallium/state_trackers/

® Pipe loaders under: src/gallium/auxiliary/pipe-loader/
> Compilation and IR components:

® IR compiler support under: src/compiler/{glsl,nir,spirv}
® TGSI support under: src/gallium/auxiliary/tgsi/
® State tracking between IRs under: src/mesa/state_tracker

» Windowing and DRI2 components:

¢ EGL support under: src/egl/drivers/dri2/
® Vulkan WSI support under: src/vulkan/wsi/

» Classic drivers (DRI-1-style) under: src/mesa/drivers/dri/
» GBM support under: src/gbm/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/212

https://gitlab.freedesktop.org/mesa/mesa

4@} Mesa 3D hardware support: debug and documentation

> Mesa is debugged with numerous environment variables

® Generic and per-driver, see https://www.mesa3d.org/envvars.html
® Shader-related, see https://www.mesa3d.org/shading.html
® LIBGL_DEBUG=verbose for OpenGL, EGL_LOG_LEVEL=debug for EGL

> eglinfo and glxinfo show information about the implementation
» Community contact:

® Mailing list: dri-devel@lists.freedesktop.org
¢ |RC channel: #dri-devel on the OFTC network

» Documentation resources:

Online website: https://www.mesa3d.org/

Gallium 3D wiki: https://www.freedesktop.org/wiki/Software/gallium/
Gallium 3D documentation: https://gallium.readthedocs.io/

Source code reference: https://elixir.bootlin.com/mesa/latest/source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

206/212

https://www.mesa3d.org/envvars.html
https://www.mesa3d.org/shading.html
https://www.mesa3d.org/
https://www.freedesktop.org/wiki/Software/gallium/
https://gallium.readthedocs.io/
https://elixir.bootlin.com/mesa/latest/source

Q}Graphics software online references
A

> Linux man pages

> Wikipedia

(https://en.wikipedia.org/):
® X Window System

X.Org Server

Wayland (display server

protocol)

Mesa (computer graphics)

® OpenGL

Vulkan (API)

> Freedesktop.org
(https://freedesktop.org/):

Direct Rendering Infrastructure
DRM

Wayland

X.org wiki

» Khronos (https://khronos.org/):

OpenGL
OpenGL Wiki
EGL

Vulkan

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

207/212

https://en.wikipedia.org/
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Mesa_(computer_graphics)
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Vulkan_(API)
https://freedesktop.org/
https://dri.freedesktop.org/wiki/
https://dri.freedesktop.org/wiki/DRM/
https://wayland.freedesktop.org/
https://www.x.org/wiki/
https://khronos.org/
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/wiki/
https://www.khronos.org/egl/
https://www.khronos.org/vulkan/

Q}Graphics software illustrations attributions

X11 logo: public domain

Wayland logo: Kristian Hggsberg

GTK logo: Andreas Nilsson, CC BY-SA 3.0

Qt logo: Qt Project, public domain

SDL logo: Arne Claus / SDL Project, public domain
GNOME logo: GNOME Foundation, GNU LGPL 2.1+
KDE logo: KDE e.V., GNU LGPL 2.1+

XFCE logo: Xfce Team, GNU LGPL 2.1+

vV v v V. V. V. Vv VY

Enlightenment logo: Carsten Haitzler and various contributors, BSD

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/212

https://commons.wikimedia.org/wiki/File:X11.svg
https://commons.wikimedia.org/wiki/File:Wayland_Logo.svg
https://commons.wikimedia.org/wiki/File:GTK_logo.svg
https://commons.wikimedia.org/wiki/File:GTK_logo.svg
https://commons.wikimedia.org/wiki/File:SDL_Logo.svg
https://commons.wikimedia.org/wiki/File:Gnomelogo.svg
https://commons.wikimedia.org/wiki/File:KDE_logo.svg
https://commons.wikimedia.org/wiki/File:Xfce_logo.svg
https://commons.wikimedia.org/wiki/File:Enlightenment_logo_black.png

Q}Graphics software illustrations attributions

Devuan GNU-Linux - tty login - server rack: Francesco Magno, CC BY-SA 4.0
DRM architecture: Javier Cantero CC BY-SA 4.0

Wayland architecture: Wayland Developers, GNU GPL 2+

X architecture: Wayland Developers, GNU GPL 2+

Wayland display server protocol: Shmuel Csaba Otto Traian, CC BY-SA 3.0

The Linux Graphics Stack and glamor: Shmuel Csaba Otto Traian, CC BY-SA 3.0
Khronos logo pack

Gallium3D vs DRI graphics driver model, CC BY-SA 3.0

vy v v vV V. Vv VY

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/212

https://commons.wikimedia.org/wiki/File:Devuan_GNU-Linux_-_tty_login_-_server_rack.jpg
https://commons.wikimedia.org/wiki/File:DRM_architecture.svg
https://wayland.freedesktop.org/architecture.html
https://wayland.freedesktop.org/architecture.html
https://commons.wikimedia.org/wiki/File:Wayland_display_server_protocol.svg
https://commons.wikimedia.org/wiki/File:The_Linux_Graphics_Stack_and_glamor.svg
https://www.khronos.org/assets/utilities/retrieveFile.php?d=opengl&t=logopacks
https://commons.wikimedia.org/wiki/File:Gallium3D_vs_DRI_graphics_driver_model.svg

Last slides

bootlin

Last slides

© C ight 2004-2024, Bootlin. . R :
OPYTE ootin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/212

Last slide
o

o%e]

Thank you!
And may the Source be with you

00tliN - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com o /212

Rights t
Q@ ights to copy

o%e]

© Copyright 2004-2024, Bootlin

License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work
Under the following conditions:
Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/212

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

a Benchmarking, testing and validation tools
o)
DRM kernel aspects (display and render):
IGT GPU Tools (IGT): main DRM test suite, used for Cl
https://gitlab.freedesktop.org/drm/igt-gpu-tools
OpenGL aspects:
drawElements Quality Program (dEQP): OpenGL/OpenGL ES/Vulkan
conformance tests

https://android.googlesource.com/platform/external/deqp
glmark2: OpenGL 2.0 and ES 2.0 benchmark tool
https://github.com/glmark2/glmark2

Patch series continuous integration:

EzBench: a collection of tools to benchmark graphics-related patch-series
https://github.com/freedesktop/ezbench

General benchmarking (including graphics):

Phoronix Test Suite: automated benchmarking tool
https://github.com/phoronix-test-suite/phoronix-test-suite

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

1/1

https://gitlab.freedesktop.org/drm/igt-gpu-tools
https://android.googlesource.com/platform/external/deqp
https://github.com/glmark2/glmark2
https://github.com/freedesktop/ezbench
https://github.com/phoronix-test-suite/phoronix-test-suite

	About Bootlin
	Base Theory and Concepts About Graphics
	Image and Color Representation
	Pixel Drawing
	Pixel Operations

	Hardware Aspects
	Pipeline Components Overview and Generalities
	Display Hardware Specifics
	Rendering Hardware Specifics
	System Integration, Memory and Performance

	Software Aspects
	Display Stack Overview
	TTY Kernel Aspects
	Framebuffer Device Kernel Aspects
	DRM Kernel Aspects
	DRM Userspace Aspects
	X Window Userspace Aspects
	Wayland Userspace Aspects
	Mesa 3D Userspace Aspects

	Last slides
	Appendix

