
How to not invent kernel interfaces

Arnd Bergmann
arnd@arndb.de

July 31, 2007

Contents

1 Abstract 2

2 Concepts 2
2.1 Simplicity . 2
2.2 Consistency . 3
2.3 Fitness . 3
2.4 ABI stability . 4

3 Syscalls 5
3.1 ioctl . 6
3.2 Sockets . 7

3.2.1 Netlink . 7

4 ABI Emulation 9
4.1 Other operating systems . 9
4.2 compat ioctl . 9

5 File systems 11
5.1 procfs . 12
5.2 sysfs . 12
5.3 debugfs . 13

6 Conclusion 13

Arnd Bergmann 1/13 July 31, 2007

1 Abstract

Every piece of kernel code needs some form of user space interface. Examples
for this include system calls, ioctl based character devices, virtual file systems,
netlink or procfs files.

Choosing the right one is often hard and people tend to get flamed for
their choices no matter what they do. The truth is that there usually is
not a single right solution for a new problem, just different degrees on how
wrong it gets, and coming up with a simple interface tends to be the most
complicated task in any new subsystem.

This paper explores different interfaces and their pros and cons by looking
at examples from existing kernel code.

2 Concepts

In Finding the right interface for a new functionality should take into account
different aspects. The most important ones are simplicity, consistency and
fitness for the given problem. Together, they form what can best be described
as ’good taste’. Taste is the ultimate feature of a good interface, but it doesn’t
have a clear definition, so we need to rely on more concrete indications for
whether an interface is good enough.

The importance of getting an interface right in the beginning comes from
the problem of changing it later. It is always possible to completely replace
all of the kernel code implementing a given functionality, but you cannot
change an interface in fundamental ways without breaking user applications.

2.1 Simplicity

The most important aspect for a kernel interface is simplicity. A complex
interface is hard to implement correctly and hard to understand, which means
application programmers will introduce bugs when trying to use it.

Interestingly, it is much harder to come up with a simple interface than
it is to create a complex mess. Even if you start out with a simple interface,
you tend to forget some aspect of the problem and later add complexity to it
in order to cover all the corner cases. When that happens, it may be better
to start over from scratch and come up with a better model of what needs
to be done.

Since the interface needs to be implemented on both kernel and user side,
both of these need to be as simple as possible. Making the user side as simple
as possible is more important though, because there are typically many users

Arnd Bergmann 2/13 July 31, 2007

of each kernel interface, so each one of them is prone to errors when it is not
obvious how the interface is used.

Example 1 (nfsservctl) Sometimes an existing interface can be replaced with
something simpler. One such example is the obscure nfsservctl system call that is
used for a specific subsystem, namely the NFS server in the kernel. Instead of the
multiplexing system call, there is now a special file system called ’nfsd’, each file
in it representing one of the subfunctions of the older system call.

Using the simple fill super() and simple transaction helpers, a write() followed
by a read() on a file in there can be used the same way the system call was before.

This would be a good example of how to do a simple interface, if we didn’t
have to implement the original system call on top of it to maintain the stable ABI.
In the end, user applications still use the old syscall, and the complexity remains
in both kernel and user space.

2.2 Consistency

When adding a new interface to an existing kernel, you should take into
account how other similar subsystems achieve the same functionality. Most
of the time, multiple possible solutions exist, and if they are equally simple,
you should choose the one that most closely resembles existing interfaces.
This gives users and reviewers the least surprises and thereby avoids bugs.

Example 2 (infiniband uverbs) The infiniband driver subsystem has an inter-
face for direct interaction of user applications with the hardware through ’verbs’,
which would typically be implemented as ioctl functions.

For some reason, the author must have been scared of adding a large amount
of ioctl numbers in his driver and decided to use an interface based on read/write
operations on a character device.

While this is not a bad idea in principle, the end result is a violation of the
consistency principle. The ib uverbs write() function basically acts as an ioctl()
replacement, where data buffers are passed in using write(), but contain command
codes and structured data, in some cases accessing user data outside of the write
buffer and passing data back to the user, or waiting for events from inside of the
write() function, depending on the command code.

Using a real ioctl() function instead of write() here would been consistent
with other interfaces and avoid potential problems with debuggability and 32 bit
emulation.

2.3 Fitness

Third, an interface must be suited for the purpose it’s used for. Just because
others use a particular interface does not mean that it is also a good idea for
something new.

Arnd Bergmann 3/13 July 31, 2007

Example 3 (Wext ioctl over netlink) One particularly sad story is config-
uration of wireless network devices in Linux. The wireless extensions in Linux
use an ioctl interface over a socket, which is a bad idea to start with, for various
reasons, but is somewhat consistent with what is used for ethernet devices and
others.

Some of the extensions are generic to all wireless network drivers, but other
are only implemented by some of them, so a ’private’ range of ioctl numbers was
assigned to these. In order to reply to ioctls asynchronously, an additional netlink
interface was introduced. When it became apparent that device private numbers
are not a good idea because of drivers using the same calls with different numbers
and vice versa, a registration facility for them was added using special ioctls.
Still adding to the complexity, some drivers started running out of private ioctl
numbers, so another indirection was added for ’sub-ioctls’.

With this being the most complex configuration interface in Linux (possibly
aside from the history s390 ’chandev’), people called out for a rewrite. With all the
best intentions, a new netlink based interface was added that unified the existing
event mechanism with the configuration interfaces. Unfortunately, the new netlink
interface had all the same warts as the ioctl interface, and was later removed again
after a series of protests.

2.4 ABI stability

Linux defines interface stability in terms of the interface between kernel and
user space. We happily break the interface between kernel components all
the time (see Documentation/stable-API-nonsense.txt for details), but that
does not mean that we break user interfaces. The idea is to guarantee every
user program that has ever run on a mainline kernel to keep running on
every future version. In particular, the interface stability includes all device
drivers, since they are distributed together with the kernel, but not together
with the programs using these drivers.

There have been cases in the past where we broke an ABI, whether inten-
tionally or not. In general, this results in an endless stream of bug reports
from users that all fall into the same traps, and public humiliation for the
responsible developers.

Example 4 (Module loader) The 2.6. version of Linux introduced a complex
reimplementation of loadable modules. There was only one program using the
system calls for module loading (modutils) and that was replaced by module-init-
tools. While almost everyone agrees that the 2.6 method of loading modules is
much preferrable to the old one, the transition caused an endless amount of pain
for users and distributors alike.

Arnd Bergmann 4/13 July 31, 2007

Example 5 (udev) The udev tool is a replacement for the a set of functionality,
including the devfs file system, the hotplug tools and module autoloading. During
the development, a lot of care was taken to ensure compatiblity with the older
mechanism, so users that were switching from older kernels were not forced to
upgrade to udev. Unfortunately, not enough care was taken to ensure compatiblity
between udev versions. Since udev made use of a lot of sysfs files, it broke when
some of these files went away. As a result, distributions shipping with an older
version of udev could not be upgraded to a newer kernel without upgrading the
udev version first.

Example 6 (KVM) The KVM hypervisor was introduced into the kernel in late
2006. For the sake of being extremely useful, it was allowed into the kernel with
an unstable ioctl ABI, which then got broken in every each of the following kernel
versions, and even more often in the development tree. As long as the user base
consisted of only a small group of developers, that went fine, since everyone capable
of using the code was aware of this problem.

With 2.6.22, the interface was formally frozen and will have to be maintained
in a compatible way, but it is still likely to require changes in the near future. If
this happens, it is guaranteed to be an unpleasant surprise for a number of users.

3 Syscalls

System calls are the low-level interface that everything else builds upon.
Every system call has its own uniquely assigned number on each architecture,
which makes it relatively hard to add a new one. More often than not, a new
syscall gets discussed for months before the exact arguments and semantic
details are nailed down enough and people agree that its time to finally add
it to the kernel.

Still, it has become much easier to add system calls to the kernel than it
used to be, and for many purposes, a system call feels more natural as an
interface than any of the alternatives.

Example 7 (Historic System Calls) The oldest publically available source
code of Unix, Version 4 from 1973, contained 38 system calls (exit, fork, read,
write, open, close, wait, creat, link, unlink, exec, chdir, time, mknod, chmod,
chmod, break, stat, seek, mount, umount, setuid, getuid, stime, fstat, stty, gtty,
nice, sleep, sync, kill, csw, dup, pipe, times, setgid, getgid, signal).

This was enough to make a lot of user space code run, and one could argue that
not much more is needed even today, because all other syscalls can be implemented
using read/write on special file systems. This approach is taken for example by
the Plan 9 operating system, which defines 50 system calls in its latest version,
and like historic Unix versions, it does not include an ioctl() call.

Arnd Bergmann 5/13 July 31, 2007

When Linux 0.1 was released, it already contained 66 System calls, and at time
of writing this, the i386 architecture defines 323 system call numbers.

3.1 ioctl

ioctl is the generic multiplexor system call. Originally introduced to control
tty emulation devices, its use has spread to practically every class of device
driver over the years. The biggest advantage of ioctl is that it becomes
extremely easy to add another device specific call to it without having to go
through an extremely tiring review process as with system calls.

Unfortunately, making it so easy to add new calls this way is also the
main disadvantage of ioctl, because that means that developers get it wrong
all the time and then have to live with the problems arising from having to
remain backwards compatible. In the best case, you can simply add another
ioctl number that gets the interface right and leaving of using the old or the
new number to user space. In the worst case, all existing users are so horribly
broken that they stop working once the kernel is fixed and end users need to
upgrade their destroy packages at the same time as upgrading their kernels.

The most common problems with ioctl handlers are:

• complex data structures get passed into the kernel, and they are not
32/64 bit interface compatible, see the secion on ABI emulation for this
problem.

• The ioctl number range is not properly assigned and registered in
Documentation/ioctl-number.txt. This can lead to identical numbers
assigned to different subsystems, which complicates debugging and 32
bit emulation.

• The data structures are defined in private headers so that the ’strace’
tool does not recognize them, even when it is built against the latest
kernel headers.

• The IO/ IOW/ IOR macros are used incorrectly, meaning that the
size of the data is not encoded properly.

• Drivers add another level of indirection and use a single ioctl num-
ber for multiple purposes, adding extra complexity in debugging and
emulation.

• ioctl is used in place of a different interface that would be more appro-
priate for a given purpose, like a new syscall or a sysfs attribute.

Arnd Bergmann 6/13 July 31, 2007

An ioctl is probably the right interface if you already have a character
device node for each physically available device, and you have understood all
the potential pitfalls. Some rules for making the best of ioctl are

• Use the smallest possible set of ioctl numbers.

• Use only simple data structures, preferable only one integer per ioctl,
but no pointers or variable-length arguments

• use only IO, IOC and IOW, but not IOWR if possible

• understand the rules for 32 bit emulation, and make sure you don’t
need a compat ioctl handler.

• don’t use ioctl for what can be easily expressed with mmap(), poll(),
read(), write() seek().

3.2 Sockets

The socket interface in Linux was inherited from BSD Unix. While it uses
file descriptor for communication, it is not really file-like in the way it works,
and an attempt to submit another interface like this as a patch in the linux
kernel would probably not get very far.

One immediate showstopper is the fact that on most architectures, the 15
system calls used for sockets are multiplexed over a common ’socketcall’ entry
point. Also, the method of establishing a connection is more complicated
than necessary and inconsistent with all other interfaces used in Linux or
Unix.

The one big reason why we still have the BSD socket interface despite all
these drawbacks is that almost every other operating system on the planet
has it as well. Compatibility with open standards can sometimes, but not
always, override good taste.

Also, in the early days of Linux, adding system calls was more about
making existing applications work without changes, while nowadays most
new system calls that get added are specific to Linux.

3.2.1 Netlink

Netlink is one of the network protocol families supported by Linux which
stands out from the others by not being a network protocol at all, but instead
an interface between user and kernel space. It has been advertised as ’a
flexible, robust wire-format communications channel typically used for kernel

Arnd Bergmann 7/13 July 31, 2007

to user communication although it can also be used for user to user and kernel
to kernel communications’ by some people.

It is one of the few interfaces that provides a way to send asynchronous
messages to user space from the kernel, and was seen as the answer to the
problems that come with ioctl handlers for some time.

Interestingly, netlink never found much friends aside from network con-
figuration and recently the ’uevent’ system, even though it does not have
properties that make it more useful for network configuration than for other
purposes.

The most significant problem with netlink is the complexity it adds to
applications using it, most of which it inherits from the socket interface that
netlink is built on. Other problems are the limited extensibility, the primitive
permission handling, and the inability to deal with 32 bit emulation on 64
bit hosts if the interface was defined in an incompatible way.

Some of these problems are addressed by the newer ’genetlink’ helper that
builds on netlink, but in reality, most code is better off using something else.

Example 8 (Ancillary data) Ancillary data on Unix domain sockets is one of
the least intuitive interfaces offered by Linux. Just to scare off readers who have
never heard of it, here is the example from the cmsg(3) man page describing how
to pass an open file descriptor through a socket from one task to another:

struct msghdr msg = {0};
struct cmsghdr *cmsg;
int myfds[NUM_FD]; /* Contains the file descriptors to pass. */
char buf[CMSG_SPACE(sizeof myfds)]; /* ancillary data buffer */
int *fdptr;

msg.msg_control = buf;
msg.msg_controllen = sizeof buf;
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int) * NUM_FD);
/* Initialize the payload: */
fdptr = (int *)CMSG_DATA(cmsg);
memcpy(fdptr, myfds, NUM_FD * sizeof(int));
/* Sum of the length of all control messages in the buffer: */
msg.msg_controllen = cmsg->cmsg_len;

Arnd Bergmann 8/13 July 31, 2007

4 ABI Emulation

One aspect of binary interfaces that is getting increasingly important is com-
patibility between 32 and 64 bit user applications running on a 64 bit kernel.
Data structures and syscall arguments often differ in subtle ways, and the
kernel needs to ensure that the arguments passed by a 32 bit process get
interpreted correctly by the kernel.

4.1 Other operating systems

Traditionally, there was also support for running binaries from other op-
erating systems like Xenix or OSF/1 on Linux, but that has become less
interesting now that far more applications exist for Linux than for any other
Unix and most other OSs include code for running Linux binaries natively.

Fragments of the old emulation code in Linux can still be found in the
SysV IPC code that contains hacks for old x86 Unix versions, even on ar-
chitectures that never ran any Unix, and in some ioctl definitions that are
defined to match the respective native Unix variant on the alpha and sparc
architectures.

Example 9 (The s390 problem) On the s390 architecture, emulating pointers
is particularly tricky, because an ’unsigned long’ integer is 32 bit, while a pointer
is only 31 bit in legacy user applications, while the kernel uses 64 bit for both.

For reasons that are too ugly to explain here, the most significant bit in a
pointer is always ignored on 32 bit s390, so in practice it can become ’1’ any
system call or ioctl argument. When interpreting the pointer as a 32 bit integer and
converting it into a 64 bit pointer, this may accidentally point into the second 2GB
of memory, which are by definition invalid in a 32 bit s390 process. Consequently,
every conversion of a user pointer value into a kernel pointer that can get passed
to copy from user needs to go through a conversion function that is defined as a
simple typecast all all architectures except s390, where it becomes

static inline void __user *compat_ptr(compat_uptr_t uptr)
{

return (void __user *)(unsigned long)(uptr & 0x7fffffffUL);
}

4.2 compat ioctl

Emulation of ioctl calls is probably the trickiest part in emulating foreign
operating systems and 32 bit native applications. Every ioctl number has its
own calling conventions and many of them are incompatible between 32 and

Arnd Bergmann 9/13 July 31, 2007

64 bit user programs. Traditionally, they were all handled by the architecture
code for sparc64, parisc, mips64, s390x, ppc64, ia64 and later x86 64, but
that has been consolidated into a single implementation in fs/compat ioctl.c.

For Linux 2.6, a method was introduced to have ioctl argument conversion
handled by every device driver for itself. Code from the generic compat ioctl
implementation is slowly being moved into the device drivers as appropriate,
and new drivers must handle the conversion themselves, or (better) not need
conversion at all.

The easiest way to ensure that an ioctl argument does not need conversion
is make the argument a single 32 or 64 bit integer argument. If a data
structure is absolutely necessary, it should only contain members of fixed
size, i.e. no pointers or ’long’ integers, and not need padding.

For a device driver that only has compatible ioctl arguments, ensuring
compatibility is as easy as assigning the same function pointer to both the
’unlocked ioctl’ and ’compat ioctl’ members in the file operations structure.

For drivers where it’s already too late for this, because they use incompat-
ible ioctl definitions, the recommended practice is to have separate functions
for ’unlocked ioctl’ and ’compat ioctl’, and make each of them access their
respective data structures in user space, but to call the same internal han-
dlers with kernel native data structures, that typically match the 64 bit user
version.

Example 10 (The i386 Problem) The x86 family of architectures (called i386,
ia64 and x86 64 in the kernel) have another unique problem that causes endless
pain for the implementation of compat ioctl functions and system call handlers.

Unlike all other architectures that support both 32 and 64 bit code, i386 uses
32 bit alignment for 64 bit data types like ’long long’ or ’ u64’, while the two 64
bit architectures that can run i386 binaries natively use 64 bit alignment. There-
fore, some data structures that do not require special treatment on the other 64
bit architecture actually do need to be converted on x86 64 and ia64, and many
developers are surprised when they see that their data structures are actually not
compatible as they had intended.

As an example, a data structure like

struct foo {
char a;
unsigned long long b;
int c;
int d;

}

is padded to 20 bytes on i386, but to 24 bytes on most other architectures,
including x86 64, and therefore needs to be converted when a driver accesses it

Arnd Bergmann 10/13 July 31, 2007

from user space. If you add an ’ attribute ((aligned(8)))’ to the structure, it will
be 24 bytes on all supported architectures, but the location of the members ’b’, ’c’
and ’d’ in the structure is still different on i386. Adding ’ attribute ((packed))’
would solve this problem, but make access unaligned and therefore slow on many
processors.

In order to define data structures that don’t have this problem, define data
structures in a way to avoid padding, both inside and at the end. ’gcc -Wpadded’
gives a good hint of potential problems.

When writing 32 bit emulation code for a data structure that already has this
problem, the best solution is to use the compat u64 and compat s64 data types in
the conversion handler, like

struct compat_foo {
char a;
compat_u64 b;
int c;
int d;

}

This describes the 32 bit data structure from the example above correctly on
all architectures.

5 File systems

One idea made famous especially by the Plan 9 operating system is to take
the Unix ’Everything is a File’ concept much further than the classic Unix
style operating systems. Where Unix basically had file systems for files stored
on disk, and special files for character and block devices, about half of the
eighty file system types in Linux 2.6.22 are for purposes other than storing
files.

An important advantage of using a virtual file system for all interaction
between kernel and user space is that you don’t need to introduce new control
structures in your user applications the way you would have to do for system
calls or ioctls. This is especially useful in scripting languages when they
interact with the kernel.

One important problem however does not go away by using a file system:
Every file you introduce in a virtual file system and every string you can read
and write in such a file becomes part of the Application Binary Interface, and
must never be changed in incompatible ways once a user program has started
to rely on it.

Arnd Bergmann 11/13 July 31, 2007

5.1 procfs

The /proc file system was the first abstract file system introduced into Linux.
Like on some Unix variants, it was originally meant to represent user pro-
cesses in a simple way. It later developed into a bit of a mess, when an
endless amount of interfaces were added for device drivers and other subsys-
tems. Each of these interfaces became part of the kernel ABI until the point
where /proc became a maintenance nightmare and developers were basically
banned from adding new files to it. Older books about kernel programming
still talk a lot about using procfs files, but it is almost always a mistake for
any new code.

However, many concepts from procfs have proved valuable and are now
used in other file systems like sysfs and debugfs. If you feel the need to add
a file to /proc, think about adding it to one of the others instead or to write
your own file system for the purpose.

5.2 sysfs

Sysfs found its way into the kernel initially under the name of driverfs, with
the intention of making a view of all drivers and devices that the kernel
knows about visible to users, in a much cleaner way than what would have
been possible with procfs.

Sysfs now shows a hierarchy of ’kobject’ data structures, each of them as a
directory, along with ’attribute’ data structures that are files with typically
a single value encoded in a text string. The most important objects here
are the devices that are present in the system, and a driver that wishes to
externalize some properties of its devices can easily add read-only or read-
write attributes to these device objects.

For simple drivers, this can be a nicer alternative to an ioctl function,
especially when you would like the functionality to be scriptable.

Example 11 (spufs) The SPU file system is an example for a special-purpose file
system. It was developed by your author for controlling the Synergistic Processing
Units on the Cell Broadband Engine processor. The file system interface was
chosen because of the flexibility compared to character devices or new system calls,
which are the more conventional approaches for driving new hardware. Specific
advantages include:

• A directory can be used to represent a context, so it’s easy to see what
contexts are present and to group their properties as files.

• Besides read/write based interfaces, other system calls like mmap() or poll()
work naturally on files.

Arnd Bergmann 12/13 July 31, 2007

• Permissions for accessing user resources can be controlled with regular chmod
calls.

• With the delete-on-close semantics in spufs, life time rules are straightfor-
ward.

In the end, using only a file system for SPUs turned out not to be ideal, so
two new system calls were added (spu run and spu create) that interoperate with
the file system. This violates the consistency rule, but it does make the user side
simpler in the end.

5.3 debugfs

Debugfs is different from all other interfaces discussed here, in that it is ex-
plicitly meant for non-stable debugging interfaces. It is extremely flexible
and easy to use, so it is an ideal candidate for prototyping and ad-hoc de-
bugging, but not for shipping code that is actually meant to be used by end
users.

Each file in debugfs can have its own file operations, so you can do every-
thing with it that can be done with a character device, and there are helpers
that allow you to monitor variables without the need to write your own file
operations if you don’t want to.

For developers that want to have their own file system in the end, debugfs
is a good starting point, as it is relatively simple to turn the code for a debugfs
directory into a new file system once you are happy with the file interfaces.

6 Conclusion

With all the different interfaces shown here, and more that are not covered,
it’s clear that there is no easy answer for how to do it right. The best
approach is often to avoid adding new interfaces altogether and use what
is already there. Where that is not possible, you can still put thought into
reusing existing functionality.

Special file systems are currently the most fashionable approach for any-
thing that deals with highly complex subsystems, because they avoid some of
the problems of defining binary interfaces, but each of the other alternatives
has its own niche.

Arnd Bergmann 13/13 July 31, 2007

	1 Abstract
	2 Concepts
	2.1 Simplicity
	2.2 Consistency
	2.3 Fitness
	2.4 ABI stability

	3 Syscalls
	3.1 ioctl
	3.2 Sockets
	3.2.1 Netlink

	4 ABI Emulation
	4.1 Other operating systems
	4.2 compat_ioctl

	5 File systems
	5.1 procfs
	5.2 sysfs
	5.3 debugfs

	6 Conclusion

