Server Mechanisms for Multimedia Applications

Luca Abeni
Scuola Superiore S. Anna, Pisa
luca@hartik.sssup.it

Abstract

This paper focuses on the problem of providing efficient run-time support to multi-
media applications in a real-time system, where three types of tasks can coexist simulta-
neously: multimedia, soft real-time, and hard real-time tasks. Hard tasks are guaranteed
based on worst case execution times and minimum inter-arrival times, whereas multime-
dia and soft tasks are served based on mean parameters. The paper describes a server
based mechanism for scheduling soft and multimedia tasks without jeopardizing the a
priori guarantee of hard real-time activities. The performance of the proposed method
is compared with that of similar service mechanisms through extensive simulation ex-
periments and several multimedia applications have been implemented on the HARTIK
kernel.

1 Introduction

Recent evolution of technology makes personal computers powerful enough to handle multi-
media streams, so there is a great interest in providing support to continuous media applica-
tions (CM applications from now on). Nevertheless, allowing CM activities to coexist with
other applications with different timing requirements (such as hard, soft real-time, and non
real-time tasks) is still an open issue.

In fact, from one hand, CM activities as audio and video streams need real-time support
because of their sensitivity to delay and jitter. On the other hand, however, the use of a
hard real-time system for handling CM applications can be inappropriate for the following
reasons:

e If a multimedia task manages compressed frames, the time for coding/decoding each
frame can vary significantly, hence the worst case execution time (WCET) of the task
can be much bigger than its mean execution time. Since hard real-time tasks are guaran-
teed based on their WCET (and not based on mean execution times), CM applications
can cause a waste of the CPU resource.

e Providing a precise estimation of WCETSs is very difficult even for those applications
always running on the same hardware. This problem is even more critical for multimedia
applications, which in general can run on a large number of different machines (think
of a video conferencing system running on several different PC workstations).

e When data are received from an external device (for instance, a communication net-
work) the inter-arrival time of the tasks that process such data may not be deterministic,
so it may be impossible to determine a minimum inter-arrival time for such tasks. As
a consequence, no a priori guarantee can be performed.



e Advanced multimedia systems tend to be more dynamic than classical real-time sys-
tems, so all the scheduling methodologies deviced for static real-time systems are not
suited for CM applications.

For the reasons mentioned above, a large part of the multimedia community continues to use
classical operating systems, as Unix or Windows, to manage CM. Recently, some scheduling
algorithms have been proposed [17, 6] to mix some form of real-time support with a notion of
fairness, but they do not make use of conventional real-time theory. Since we are interested
in systems based on a conventional RT scheduler (such as EDF or RM), we will not consider
this kind of solutions.

Anderson et al. in [5] describe a multimedia operating system based on an EDF scheduler,
however the quality of service (QoS) can only be guaranteed based on the WCET of each
task and based on a model of the external events that can activate a task (they use a Linear
Bounded Arrival Process).

In [8], Jeffay presents a hard real-time system based on EDF scheduling to be used
as a test-bet for video conference applications; the system can guarantee each task at its
creation time based on its WCET and its minimum inter-arrival time. While a bound for
the WCET can be found, the inter-arrival time may not have a lower bound, because of
the unpredictability of the network (which may even reverse the order of messages at the
reception site). For this reason, Jeffay in [7] introduces the Rate-Based Execution (RBE)
task model, which is independent from the minimum inter-arrival time. Although this kind
of task cannot be guaranteed to complete within a given deadline, it is possible to guarantee
that it will not jeopardize the schedulability of other hard real-time tasks present in the
system.

In [12], Mercer, Savage, and Tokuda propose a scheme based on CPU capacity reserves,
where a fraction of the CPU bandwidth is reserved to each task. A reserve is a couple (C;, T;)
indicating that a task 7; can execute for at most C; units of time in each period T;. This
approach solves the problem of knowing the WCET of each task, because it fixes the maximum
time that each task can execute in its period. Since the periodic scheduler is based on the
Rate Monotonic algorithm, the classical schedulability analysis can be applied to guarantee
hard tasks, if present. The only problem with this method is that overload situations on
multimedia tasks are not handled efficiently. In fact, if a task instance executes for more
than C; units of time, the remaining portion of the instance is scheduled in background,
prolonging its completion of an unpredictable time.

In [9], Kaneko et al. propose a scheme based on a periodic process (the multimedia server)
dedicated to the service of all multimedia requests. This allows to nicely integrate multimedia
tasks together with hard real time tasks; however, being the server only one, it is not easy to
control the QoS of each task.

In [2], Liu and Deng describe a scheduling hierarchy which allows hard real-time, soft
real-time, and non real-time applications to coexist in the same system, and to be created
dynamically. According to this approach, which uses the EDF scheduling algorithm as a low-
level scheduler, each application is handled by a dedicated server, which can be a Constant
Utilization Server [3] for tasks that do not use nonpreemptable sections or global resources,
and a Total Bandwidth Server [14, 15] for the other tasks. This solution can be used to isolate
the effects of overloads at the application level, rather than at the task level. Moreover, the
method requires the knowledge of the WCET even for soft and non real-time tasks.

In this paper, we propose a scheduling methodology based on reserving a fraction of the
processor bandwidth to each task (in a way similar to processor capacity reserves of Mercer



[12]). However, to efficiently handle the problem of task overloads, each task is scheduled by
a dedicated server, which does not require the knowledge of the WCET and assigns a suitable
deadline to the served task whenever the reserved time is consumed.

The rest of the paper is organized as follows: Section 2 specifies our notation, definitions
and basic assumptions; Section 3 describes our scheduling scheme in detail and its formal
properties; Section 4 compares the proposed algorithm with other server mechanisms, and
presents some simulation results; Section 5 describes an implementation of the proposed
algorithm on the HARTIK kernel and shows some experimental results; and, finally, Section
6 presents our conclusions and future work.

2 Terminology and assumptions

2.1 basic definitions

We consider a system consisting of three types of tasks: hard, soft, and non real-time tasks.
Any task 7; consists of a sequence of jobs J; j, where r; ; denotes the arrival time (or request
time) of the 5 job of task ;.

A hard real-time task is characterized by two additional parameters, (C;, T;), where C; is
the WCET of each job and T; is the minimum inter-arrival time between successive jobs, so
that r; j 11 > 7 ; +T;. The system must provide an a priori guarantee that all jobs of a hard
task must complete before a given deadline d; ;. In our model, the absolute deadline of each
hard job J; ; is implicitly set at the value d; ; = r; ; +T;.

A soft real-time task is also characterized by the parameters (C;, T;), however the timing
constraints are more relaxed. In particular, for a soft task, C; represents the mean execution
time of each job, whereas T; represents the desired activation period between successive jobs.
For each soft job J; ;, a soft deadline is set at time d; ; = r; ; +T;. Since mean values are used
for the computation time and minimum inter-arrival times are not known, soft tasks cannot
be guaranteed a priori. In multimedia applications, soft deadline misses may decrease the
QoS, but do not cause critical system faults. To predict the QoS that can be achieved by the
system, a statistical guarantee could be requested; for example, by providing the probability
for a job of finishing before its deadline. In this work, our goal is to schedule soft tasks to
minimize the mean tardiness, without jeopardizing the schedulability of the hard tasks. The
tardiness F; ; of a job J; ; is defined as

E;j = maz{0, fi;j—d;;} (1)

where f; ; is the finishing time of job J; ;.

A non real-time task is a task without timing constraints. Nothing is assumed to be known
about non real-time tasks. Our goal is to schedule them as soon as possible, preserving the
schedulability of the hard tasks and the QoS statistically guaranteed for soft tasks.

Finally, a periodic task is a task (hard or soft) in which the inter-arrival time between
successive jobs is exactly equal to T; for all jobs (r; ;41 = ri; + T;). Periodic tasks do not
have special treatment in this model.

Let D;(t1,t2) the computation time required by task 7; in the time intervals [t1, t5]:

Dj(t1,t2) = Z Cij

Jirii >tind; j<to



70 T T T T T T T T T
"times.mpg" ——

65 - E

55 |- -

50 |- E

Decode time (ms)

40 - -

35 —

30 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Frame number

Figure 1: MPEG decoding times.

we say that task 7; requires a bandwidth B; if

D;(t1,t
BZ — ma.X{ ’L( 17 2)
t1,t2 to — t1

.

Since from [11] is known that the bandwidth B; required by an hard real-time task 7;
is % and that a task set ¥ is schedulable if >, B; < Upy, (with Uy, = 1 using EDF and
Ulubl = 0.69 using RM), it is easy to perform an a priori guarantee on hard tasks: if ¥ is
composed only of hard tasks, the guarantee test is

C;
> T < Uub

i

2.2 Soft tasks

Tasks that manage CM can be modeled as soft real-time tasks, because missing deadlines
may decrease the QoS without causing catastrophic consequences. Moreover, CM activities
are typically characterized by highly variable execution times, causing the WCET to be much
greater than the mean execution time. As an example, Figure 1 shows the decoding times of
various frames in a typical MPEG video stream.

For the reasons mentioned above, treating CM tasks as hard real-time tasks is not ap-
propriate, firstly because an underestimation of the WCET would compromise the guarantee
done on the other tasks, and secondly because it would be very inefficient, since trying to
guarantee a task with a WCET much greater than its mean execution time would cause a
waste of the CPU resource.



This problem can be solved by a bandwidth reservation strategy, which assigns each
soft task a maximum bandwidth, calculated using the mean execution time and the desired
activation period, in order to increase CPU utilization. For using a bandwidth reservation
strategy, it is needed a mechanism to schedule a soft real-time task 7; in order to ensure that
its required bandwidth B; is no more than the reserved bandwidth.

In this way, if a task needs more than its reserved bandwidth, it may slow down, but it
will not jeopardize the schedulability of the other tasks: this is the isolation property, that
ensure that a task overload will remain isolate to the task. By reserving a bandwidth B; to
each task and isolating the effects of task overloads, an a priori guarantee can be performed
using the classical schedulability analysis

ZBi < Ulup-

)

2.3 Server mechanisms

Our scheduling scheme is based on EDF algorithm, because it permits a better CPU utiliza-
tion (for EDF Up,,, = 1, for RM Up,y, = 0.69), so we propose to schedule hard tasks jobs J;
by their absolute deadlines d; ; = r; j +Tj, and to schedule each other job J; ; by an absolute
deadline dj j, assigned to it in order to require a band Bj. For doing this, we need a mech-
anism, called server, to assign an absolute deadline to a job: a server receives computation
time requests (jobs) in input and serves them assigning a dynamic absolute deadline to each
of them.

The arriving jobs are enqueued in a queue of pending requests according to a given
(arbitrary) non-preemptive discipline (e.g., FIFO) and the first job of the queue is served
assigning a deadline to it and eventually putting it in the scheduler ready queue (since we
use an EDF scheduler, this queue is ordered by absolute deadlines). If the first job of a
server’s pending request queue is in the ready queue, the server is said to be eligible, else it
is not eligible; the server is said to be active when the first job of its pending request queue
is executing.

A server S; can serve a job .J;; dividing it in smaller blocks, each of them will be
assigned a fixed absolute deadline, named chunks: J;; is served dividing it in m chunks
H;j1,H;jo, ..., Hj jm, each of them is characterized by a release time r; ;. a deadline d; j ,
a finish time f; ; » and a computation time c; ;. In general, r; ;1 > r;; and r;jx11 > fijks
where the major sign holds if the server is not eligible between r; ; and r; ;1 (or between f; ;
and 7 j gy1)-

The execution time required by a server S5 can be defined similarly to the execution time
required by a task 7;:

Di(ty,t2) = > Cijk

Ti gk >t Ad; 5k <t2

the bandwidth required by a server is defined exactly as that required by a task.
In order to be usable for realizing the isolation property, a server must require a limited
bandwidth B;: the server can limit its required band in two way:

e becoming not eligible every time that it can require too much execution time

e increasing the deadline of the served jobs in order to not require too much execution
time



The first solution is used by some budget-based servers (like the Dynamic Sporadic
Server): to each server is assigned a budget that decreases when the server is active; when the
budget becomes 0, the server becomes not eligible and it will return eligible at a replenishing
time calculated to limit the band to Bj.

The second solution is used by a class of servers (like the Total Bandwidth Server) that
remains ever eligible while their pending request queue is not empty: we call them non-idle
servers. Also if a budget is not used in the definition, a non idle server can be thought as
characterized by a budget that is immediately replenished when it arrives to 0.

Scheduling a task 7; by a dedicated limited band server S, that requires a bandwidth By,
we can ensure that the bandwidth required by 7; is By, so a bandwidth reservation strategy
can be used.

3 Multimedia Servers

To integrate the three classes of tasks in the same system, hard tasks are scheduled by the
EDF algorithm based on their absolute deadlines, each soft task is handled by a dedicated
server, whereas non real-time tasks can be handled by a single server: any conventional
dynamic priority server like the Dynamic Sporadic Server or the Total Bandwidth Server or
other can be used for this purpose.

3.1 Existent servers

The service mechanisms that have inspired this work are the Dynamic Sporadic Server (DSS)
[14, 4] and the Total Bandwidth Server (TBS) [14, 15].

The DSS is a dynamic version of the Sporadic Server, originally proposed by Sprunt, Sha
and Lehozky [13] for fixed priority systems: whereas the Sporadic Server has a fixed priority
chosen according to the RM algorithm, the DSS has a dynamic priority assigned through a
suitable deadline. The deadline assignment and the budget replenishment are defined by the
following rules:

e When the server is created, its budget c; is initialized to its maximum value.

e The next replenishment time RT and the current server deadline ds are set as soon as
¢s > 0 and there is an aperiodic request pending. If ¢, is such time, then RT = d; =
ta+Ts.

e The replenishing amount RA to be done at time RT is computed when the last aperiodic
request is completed or c¢; has been exhausted. If ¢; is such a time, then the value of
RA is set equal to the budget consumed within the interval [t ¢]

The TBS is a simple and efficient aperiodic service mechanism based on the idea of
assigning each aperiodic request a deadline such that the overall processor utilization due
to the aperiodic load never exceeds the maximum value Us. In particular, when the k"
aperiodic request arrives at time ¢t = ry, it receives a deadline

C
dp = max{rk, dk—l} + —k
Us
where C} is the execution time of the request and Uj is the server utilization factor (that is,
its bandwidth). By definition, dy = 0. An explicit budget is not used in the original definition



cl=4 c2=3

di d2 da3 t

cl=4 c2=3

TBS: B=0.5

d1 d2 t

cl=4 c2=3

\ CUS: B=0.5

T T I I

d1 d2 t

Figure 2: Comparison of three different dynamic servers: DSS, TBS, and CUS.

of the TBS, but the server can be thought as characterized by a budget that is replenished
at C) at time ry,.

Liu and Deng in [3] proposed a server mechanism very similar to TBS, the Constant
Utilization Server (CUS), which differs only for the replenishing time, which occurs at time
max{ry, d,_1 } rather than at rj as for the TBS.

While the isolation property can be realized independently by the kind of server used (it
is only important that the server require a limited band),the QoS achieved by a soft task
depends on the type of server adopted to serve it. If a single task is overloaded (it needs more
than the reserved band), it is possible that some of its jobs finish after their soft deadlines:
we say that this task is late. If there is some idle time (a fraction of the CPU bandwidth is
free) a late task would have to use it to exit the late state. If the idle time is due to early
completion of some previous jobs of the late task, also a server that not have the non-idle
property can reclaim this time, but if the idle time is due to a total utilization factor less then
1 or to early completions of other tasks jobs, only a non-idle server can reclaim this time.

This difference between a non-idle server and a server that doesn’t have this property
is visible in figure 2. In this figure we can see the same soft task served by three different
servers: the TBS, the DSS and the Constant Utilization Server (CUS), proposed by Dend
and Liu in [3]. The TBS, that is a non-idle server, can use additional background time to



reduce the response times, while the others two servers (the DSS or the CUS), that haven’t
the non-idle property, cannot execute for a time greater than (¢, — #1)Us in each interval
[t1,t2] even though the system is underloaded.

From a performance point of view, the TBS would be the right choice to serve multimedia
tasks, so let’s consider a multimedia task served by a dedicated TBS: each job J; ; is assigned
a deadline

C.
dij = max{ri;, dij 1} + —

Us
that can also be written as

d - = Ti,j‘l'Ts ifj=1
4 max{ri,j, di,j—l} + T, otherwise

with Ty = i

In [7], Jeffay proposed a Rate Based Execution (RBE) model, in which each task 7; is
characterized by three parameters (X;,Y;, D;) and the jobs deadline are calculated according
to the following rule:

d o — ’f‘i,j-l-Di lflgngl
I max{r;j,d; j_1} +Ts otherwise

It is easy to see how the deadlines generated serving a soft task with a dedicated TBS are
exactly the same deadlines assigned to the jobs by an RBE(1, T, Ts) model.

3.2 The Constant Bandwidth Server

Tt is easy to understand how to give the maximum possible QoS to a multimedia task, it must
be served by a non-idle server, like the TBS. Unfortunately, the TBS presents a problem:
we said that behavior of the server must guarantee that, if Uy is the fraction of processor
time assigned to a server (i.e., its bandwidth), its contribution to the total utilization factor
is no greater than Uy, even in the presence of overloads. Notice that in our hypothesis (no
knowledge about the soft tasks WCETs and minimum inter-arrival times) this property, also
belonging to a Dynamic Sporadic Server (DSS) [14, 4], is not valid for a Total Bandwidth
Server (TBS) [14], nor for a Constant Utilization Server (CUS) [3], whose actual contributions
are limited by Us under the assumption that all the served jobs do not execute more than
the declared WCET. Also the RBE model, that we said to assign the same deadlines as TBS,
needs the knowledge of the tasks WCETSs to guarantee each job to finish before its deadline.

We need a non-idle server (whose performance is comparable with the one achievable by
a TBS) that doesn’t need any information about WCETs and minimum inter-arrival times
(like the DSS): this last property is obtainable only using a budget-based mechanism similar
to which used by DSS. To provide these two properties we introduce the Constant Bandwidth
Server (CBS), defined as follows:

e A CBS is characterized by a budget ¢; and by a ordered pair (Qs,Ts), where Qs is the
maximum budget and 75 is the period of the server. The ratio Us = Qs/Ts is denoted
as the server bandwidth. At each instant, a fixed deadline d,j, is associated with the
server. At the beginning dso = 0.

e Each served job .J;; is assigned a dynamic deadline d;; equal to the current server
deadline dj 4.



B At il o B s I e I s B e I e B v B
2, L Bl H e m mlE |-
CBS ) ” ?

@

Figure 3: Simple example of CBS scheduling.

e Whenever a served job executes, the budget ¢, is decreased by the same amount.

e When c; = 0, the server budget is recharged to the maximum value (); and a new server
deadline is generated as d, 1 = d, 1 + Ts. Notice that there are no finite intervals of
time in which the budget is equal to zero.

e A CBS is said to be active at time ¢ if there are pending jobs (remember the budget ¢, is
always greater than 0); that is, if there exists a served job J; j such that r; ; <t < f; ;.
A CBS is said to be idle at time ¢ if it is not active.

e When a job J;; arrives and the server is active the request is enqueued in a queue of
pending jobs according to a given (arbitrary) non-preemptive discipline (e.g., FIFO).

e When a job J; ; arrives and the server is idle, if ¢, > (d,  —7;,;)Us the server generates a
new deadline dg ;11 = r; ; +Ts and c; is recharged to the maximum value (), otherwise
the job is served with the last server deadline d; j using the current budget.

e When a job finishes, the next pending job, if any, is served using the current budget
and deadline. If there are no pending jobs, the server becomes idle.

e At any instant, a job is assigned the last deadline generated by the server.

Figure 3 illustrates an example in which a hard periodic task, 71, is scheduled together
with a soft task, 7 served by a CBS having a budget (J; = 2 and a period Ts = 7. The first
job of 7y arrives at time ry = 2, when the server is idle. Being ¢; > (ds,0 —71)Us, the deadline
assigned to the job is ds 1 = r1 + Ts = 9 and ¢, is recharged at Qs = 2. At time ¢; = 6 the
budget is exhausted, so a new deadline dg 2 = d, 1 +7s = 16 is generated and c; is replenished.
At time 79 the second job arrives when the server is active, so the request is enqueued. When
the first job finishes the second job is served with the actual server deadline (d;» = 16). At
time £, = 16 the server budget is exhausted so a new server deadline dy3 = ds2 +t, = 23 is
generated and c; is replenished to (Q;. The third job arrives at time 17, when the server is
idle and ¢ =1 < (ds3 — r3)Us = (23 — 17)% = 1.71, so it is scheduled with the actual server
deadline dy 3 without changing the budget.

In Figure 4, a hard periodic task, 71, is scheduled together with a soft task, 7o, having
fixed inter-arrival time (75 = 7) and variable computation time, with a mean value equal to
Cs = 2. This situation is typical in applications that manage continuous media: for example,



11 (2,3)

APl I o I o s B o B

el 0 omlem omE om e

CBS

27 M

i1 ©2 3 t

Figure 4: Example of CBS serving a task with variable execution time and constant inter-
arrival time.

11 (2,3)

HARD | | | | | | | |

cl=2 c2=2 d1 d2 c3=2

2 Tg pimm [Imm !

CBS
(2.7)

i1 ©2 13 t

Figure 5: Example of CBS serving a task with constant execution time and variable inter-
arrival time.

a video stream requires to be played periodically, but the decoding/playing time of each
frame is not constant. In this example, to optimize the processor utilization, 79 is served by
a CBS with a maximum budget equal to the mean computation time of the task (Qs = 2)
and a period equal to the task period (Ts = 7).

As we can see from Figure 4, the second job of task 7 is first assigned a deadline d o =
ro + Ts. At time to, however, since c¢; is exhausted and the job is not finished, the job is
scheduled with a new deadline dy3 = ds2 + Ts. As a result of a longer execution, only the
soft task is delayed, while the hard task meets all its deadlines. Moreover, notice that the
exceeding portion of the late job is not executed in background, but is scheduled with a
suitable dynamic priority.

In other situations, frequently encountered in CM applications, tasks have fixed computa-
tion times but variable inter-arrival times. For example, this is the case of a task activated by
external events, such a driver process activated by interrupts coming from a communication
network. In this case, the CBS behaves exactly like a TBS with a bandwidth Us = Qs/Ts. In
fact, if C; = Qs each job finishes exactly when the budget arrives to 0, so the server deadline is
increased of Ts. It is also interesting to observe that, in this situation, the CBS is also equiv-
alent to a Rate-Based Execution (RBE) model [7] with parameters x = 1,y = T;,D = T;.
An example of such a scenario is depicted in Figure 5.

10



b2

Jh c=4 2 c=4

Figure 6: Serving some jobs divided in chunks.

3.3 CBS properties

The proposed CBS service mechanism presents some interesting properties that make it
suitable for supporting CM applications. The most important one, the the isolation property
is formally expressed by the following theorem.

Theorem 1 A CBS with parameters (Qs,Ts) requires a band Us = %5

Proof.

To prove the theorem, we show that a CBS with parameters (Qs,Ts) cannot occupy a band-
width greater than Ug = Q4/Ts. That is, if Ds(t1,%2) is the processor demand of the CBS in
the interval [t1,t3], we show that

Viti,to € N : iy > tq, Ds(tl,tg) < %(tg—tl).
S

We recall that under a CBS a job J; is assigned an absolute time-varying deadline d;
which can be postponed if the task requires more than the reserved bandwidth. Thus, each
job J; can be thought as consisting of a number of chunks Hjj, each characterized by a
release time a;; and a fixed deadline d;j. An example of chunks produced by a CBS is
shown in Figure 6. To simplify the notation, we indicate all the chunks generated by a server
with an increasing index % (in the example of Figure 6, H,; = Hy, H1 2 = Ho, Hy; = Hj3,
and so on).

The release time and the deadline of the k** chunk generated by the server will be denoted
by ar and dg, ¢ will indicate the actual budget and n the number of requests in server queue.
These variables are initialized in the following manner:

d =

>3 o
1
coc oo

Using these notations, the server behavior can be expressed as in figure 7.
Indicating with ey the server time demanded in the interval [ag, di] (that is, the execution
time of chunk Hy), we can say that

k2
Vii,to, Tkq, ko : Ds(t17t2) = Z €k = Z Ck-
k:ap >t Adp <ta k=k1

11



When job J; arrives at time r;

When

When

When

enqueue the request in the server pending request queue;
n=n+1;
if (n == 1) /* (the server is idle) */

if (rj + (¢ / Qg) * Ts >= di)

[Hmmmmmm e Rule 1--------------- */
k =k + 1;
ag ’f’j;
dp = ap + Ts;
c = Qs;
else
[*mmmmmmmmm Rule 2--------------- */
k=k + 1;
ap = ’I“j;
dp = di_1;

/* ¢ remains unchanged */
job J; terminates
dequeue J; from the server queues;
n=n-1;

if (n !'= 0) begin to serve the next job in queue with deadline dj;
job J; served by S, executes for a time unit

c=c¢c-1;

(c == 0)

[Hm—mmm e Rule 3--—-——---—-———- */

k=k+1;

ap = actual_time();
dp = dg—1 + T;
c = Qs;

Figure 7: The CB algorithm.

12




If ¢4(t) is the server budget at time ¢ and fi is the time at which chunk Hj ends to
execute, we can see that cg(fx) = cs(ag) — e, while c5(ags1) is calculated from cs(f) in the
following manner:

Colapay) = cs(fr) if dpyq was generated by Rule 2
S\ T 0, if dy, 1 was generated by Rule 1 or 3.

Using these observations, the theorem can be proved by showing that:

Dy(ag,, diy) + cs(fry) < (diy — akl)%-

We proceed by induction on k9 — k1, using the algorithmic definition of CBS shown in Figure
7.

Inductive base. If in [t1, 2] there is only one active chunk (k1 = ko = k), two cases have
to be considered.

Case a: dj < ap + Ts.

If di, < ap + T, then dj, is generated by Rule 2, so ap + %TS <dg and ar = fr_1,
that is
Cs(ak)

S

ap + Ts < d.
Being ¢;(fi) = es(ak) — ex = cs(ax) — Ds(ax, di), we have

D (ak,dy) + cs(fr)
Qs

ag T, < dp

hence 0
Dg(ag,dr) + cs(fr) < (dp — ak)?s-
Case b: dy. = ay, + T.
If d, = ay + Ts, then Dg(ag,dr) + cs(fx) = er + ¢s(fr) = Qs. Hence, in both cases, we

have:

Ds(ak,,dr,) + cs(fr,) = Ds(ag, di) + cs(fi) < (dg — ak)% = (dk, — akl)%-

Inductive step. The inductive hypothesis

Dy(ag,, dgy—1) + cs(fro—1) < (dgy—1 — akl)%

S

is used to prove that

Dy(ag,, diy) + cs(fry) < (diy — akl)%-

Given the possible relations between dj and dj_q, three cases have to be considered:

® di > dj_1 +Ts. That is, dj, is generated by Rule 3 or Rule 1 when r; > d; ;.

13



e di = dp_1. That is, di is generated by Rule 2.

o dp_1 <d <dp_1 +T,. Thatis, d is generated by Rule 1 when r; < d;_;.

Case a: di, = d,—1 + Ts.

In this case dj, can be generated only by Rule 1 or 3. Adding e, to both sides of the
inductive hypothesis, we obtain:

ko—1

Qs
Z er + ek, < de 1— akl)

Cs(fro—1) + €ks
k=k1 TS

and, since ¢ (fx) = cs(ag) — ek, we have

Z er < (dgy—1 — akl)g — s(fry—1) + cs(ary) — s (fk,)-

k=k1

Since dj, is generated by Rule 1 or 3, it must be c5(ag,) = Qs, therefore:

k2
Z 6k< dk? l_akl)g (sz 1)+Q5_Cs(fk2)
k=k1
ks 0. 0
> entes(frn) < (et — ) 7" = es(fra1) + Qs < (diy1 — ar,) 7 + Qs
k=k: s 5
and finally

Ds(akladkg) + Cs(sz) S (de—l - akl)% + QS — (de—l +Ts - akl)%

S

Ds(akude) + Cs(ka) < (dk2 - akl)%'
Case b: dy, = dj,—1.
If dy, = dy,—1, then dj, is generated by Rule 2. In this case,

ko—1

Q
Y ekt en, < (dryo1 — k) = 5 (fram1) + ehy
k=k: §

but, being di, = di,—1, ¢s(fk,) + ex = cs(ak,) and cs(ak,) = cs(fr,—1) (by Rule 2), we have:

Qs

Z er < (di, — akl)Q = Cslak,) +er, = (di, — ar,) 75~ = ¢s(fin)

k=kq s
hence

(klakQ +Cs sz Z €L < dkz akl)Q_
k=k, T

Case c: dy,—1 < dp, < dg,—1 +Ts.

14



If dy, < dg,—1 + T, di, is generated by Rule 1, so a, + %Ts > dg,—1, hence
(fry-1) > (dgy—1 — ak2) . Applying the inductive hypothesis, we obtain

ko—1

Q
> e+ ery < (dpy—1 — akl)—TS — Cs(fry—1) + €k,
k=k1 $

from which we have

Qs Q
Z er < (dgy—1 — %)T (dky—1 — ak2)?s+ekz
k=Fk, §
Qs
> ek < (diy—1 = diy—1 — Qi + Giy) 7o + €y

k=k1 Ts

Now, being ey, = Qs — ¢s(fk,), we have:

Y er < (—ay, +ak2)% + Qs — ¢5(fry) = (ag, + T — %)Q

(sz)
P T T

but, from Rule 1 and 3, we have dj, = a; + T, so we can write

Z er < (di, — %)Q Cs(frs)

k=Fk, Ts

hence

(klakQ) +Cs sz Z €k < dkz akl)Q
k=kq T

The isolation property allows us to use a bandwidth reservation strategy to allocate
a fraction of the CPU time to each task that cannot be guaranteed a priori. The most
important consequence of this result is soft task can be schedules together with hard tasks
without affecting the a priori guarantee even in the case in which soft requests exceed the
expected load.

In addition to the isolation property, the CBS has the following characteristics.

e No hypothesis are required on the WCET and the minimum inter-arrival time of the
served tasks: this allows the same program to be used on different systems without
recalculating the computation times.

e Lemma 1 A hard task T; with parameters (C;,T;) is schedulable by a CBS with param-
eters Qs = C; and Ty = T; if and only if 7; is schedulable without the CBS.

Proof.

For any job of a hard task we have that r; ;11 —r;; = T; and ¢;; < @Q;. Hence, by
definition of the CBS, each hard job is assigned a deadline d; ; = r; ; +T; and it is
scheduled with a budget Q; = C;. Moreover, since ¢; ; < ();, each job finishes no later
than the budget is exhausted, hence the deadline assigned to a job does not change and
is exactly the same as the one used by EDF. O

15



e The CBS automatically reclaims any spare time caused by early completions. This
is due to the fact that whenever the budget is exhausted, it is always immediately
replenished at its full value and the server deadline is postponed. In this way, the
server remains eligible and the budget can be exploited by the pending requests with
the current deadline. This is the main difference with respect to the processor capacity
reserves proposed by Mercer et al.

e Knowing the statistical distribution of the computation time of a task served by a CBS,
it is possible to perform a statistical guarantee, expressed in terms of probability for
each served job to meet its deadline.

3.4 Statistical guarantee

To perform a statistical guarantee on soft tasks served by CBS, we can model a CBS as a
queue, where each arriving job J; ; can be viewed as a request of ¢; ; time units. At any time,
the request at the head of the queue is served using the current server deadline, so that it is
guaranteed that Qs units of time can be consumed within this deadline.

We analyze the following cases: a) variable computation time and constant inter-arrival
time (see also Figure 4); and b) constant computation time and variable inter-arrival time
(see also Figure 5).

Case a.

If the jobs inter-arrival times are constant and equal to Ts and the jobs execution times are
randomly distributed with a given probability distribution function, the CBS can be modeled
with a D¢ /D/1 queue: each T units of time a request of ¢; units arrives and at most Qs
units can be served. We can define a random process v; as follows:

v = C1
vj = maz{0,vj_1 — Qs} + ¢

where v; indicates the length of the queue (in time units) at time (j — 1)T5, that is the units
of times that are still to be server when the job J; ; arrives. It can easily be shown that the
absolute deadline before which .J; ; will finish is

v
5]' =r;+ ’VQ—JS-‘ T.
If W,gj) = P{v; = k} is the state probability of process v; and C}, = P{c; = h} is the

probability that an arriving job requires h execution time units (since c; is time invariant,
C}, doesn’t depend on j), it is quite easy to calculate the value of 7r,(€] ).
W,(c]) = P{v; = k} = P{maz{vj 1 — Qs,0} +¢; = k}

w,gj) = Z P{maz{vj—1 — Qs,0} + ¢; =k Avj_1 = h}.

h=—00

16



Being v; greater than 0 by definition, the sum can be calculated for i going from 0 to infinity:

Equation

o @]
Z P{maz{vj_1 — Qs,0} +¢; = klvj_1 = h}P{vj_1 = h} =
h=0

i P{maxz{h — Qs,0} +¢; = k}P{v;_1 =h} =

h=0

Qs o0

> P{c;j=k}P{vj 1 =h}+ > P{h—Qs+c;=Fk}P{vj =h}=
h=0 h=Qs+1

Qs . 0 .

> C’kﬂ',(f_l) + > Plg=k-h+ Qs}ﬂ',(f_l) =

h=0 h=Qs+1

Qs _ o0 ,

Z CkTr,(ljil) + Z Ck—h-I-Qsﬂ-}(L]il)

h=0 h=Qs+1

Y+ Y Crensoum Y

. Qs .
W,(c]) = Z Cmr,(lj
h=0 h=Qs+1

can be writen in matrix form

defining

Case b.

¥ = p-b

Qs+1 (9)

- - ~ T
0
Co Ch 0 0 . .. 71_(j)
Cy G Ci G0 .. )
CQ CQ CQ Cl CO 0 . . and H(j) — %])
03 03 03 02 Cl CU 0 T3

In the case in which job execution times are constant and equal to Q, (Vj,¢;; = Q) and
jobs inter-arrival times are distributed according to a given distribution function, each job
is assigned a deadline d; ; = max{r; j,d; j—1} + T, identical to that assigned by a TBS. In
this situation, the CBS can be modeled by a G/D/1 queue: jobs arrive in the queue with a
randomly distributed arrival time and the server can process a request each T time units. We
can define a random process w; as w; = d; j —r; j —Ts, so we have d; j 1 = r; j1+Ts+w; j41.
In this way, it is easy to find the distribution of the relative deadlines d; ; — r; ; within which
a job J; ; is served. In fact,

wij = dijj —1ij—Ts = dij —rij=wij+Ts.

17



Since d; j = maz{r; j,d;;—1} + Ts, we have
wit1 = diji1—Ts —rijy1 =mazr{riji1,dij} +Ts — Ts — rijy1 =
= maz{0,d;; —r;j41} = max{0,r;; +w; +Ts —r;j1} =
= maz{0,w; — a1 +Ts}

having defined a;; = r;j4+1 — r;j. Being a; is a stochastic stationary and time invariant
process and w; a Markov process, the matrix M describing the w; Markov chain can be found

defining 7T](cj) = P{wj =k} and Ap, = P{aj =h}.

) = Plw; =k} = P{max{0,w; | —a; + T,} =k} =
= Z P{max{0,w;_1 —a; + Ts} =k ANwj_1 = h} =
h=—00
o @]
= Z P{max{0,w;_1 —a; + T} = klwj_1 = h}P{wj_1 = h} =
h=—o00

= i P{max{0,h —aj + Ts} = k}P{w;_1 = h} =

h=—o0

In order to simplify the calculus, we can distinguish two cases: k=0 and k& > 0:

) = S P{h—a;+T, <0}P{w; 1 = h} =
h=—o00
o0
= Z P{a]‘ > h—i—TS}P{wj_l = h} =
h=—o00
= Y X Ply=r) V=
h=0r=h+Ts
S S A
h=0r=h+Ts
Vk > 0,7 = S P{h—aj+T, = k}P{wj_ = h} =
h=—00
= i P{a-—h—k-l—T}W(j*l)—
— i= ) Y =
h=—o00
> —1
= > Ah7k+TS7T;(LJ_ )
h—=0

Matrix M describing the Markov chain is so

Po P1 P2 . .0 0 0

Ar A, Ano, LA 0 0 .

A1,y Ari Ar, Ar,—r . Ay A9 0 0
Ay 0 0

M=| Ar,43 Ar,42 Ar,1 Ar, . Ay Ay

18



with
o
pi= 3. A
r=t+7T%
For a generic queue, it is known that the queue is stable (i.e., the number of elements in
the queue do not diverge to infinity) if p = meaninterarrival time 1

mean service time
Hence, the stability can be achieved under the following conditions:

(o < Q, in case a)
Tij+1 —ri; > Ts  incaseb)
In general,
Cij s
Tij4+1 — ’I'"L',j o Ts

If this condition is not satisfied the difference between the deadline d;; assigned by the
server to a job J; ; and the job release time r; ; will increase indefinitely. This means that,
for preserving the schedulability of the other tasks, 7; will slow down in an unpredictable
manner.

If a queue is stable, a stationary solution of the Markov chain describing the queue can be
found; that is, it exists a solution II such that II = lim;_, 1), so IT = MII. This solution
can be approximated truncating the infinite dimension matrix M to an Nz N matrix M’ and
solving the eigenvector problem IT' = M'IT" with some numerical calculus techniques.

The knowledge of the probability distribution function of the relative deadlines before
which a multimedia task job is guaranteed to finish is useful to guarantee a QoS to each task
and to choose the right (Qs,Ts) parameters for each soft task.

3.5 Conclusions on CBS

We introduced the CB server to serve soft tasks, but the CBS behavior is more general and
this kind of server can be used to serve each kind of task. To see this, we distinguish four
kind of tasks basing on the execution/inter-arrival times variance.

The first kind of tasks is characterized by known WCET and minimum inter-arrival
time: we have previously referred this tasks as hard real-time tasks, saying that they can
be scheduled using EDF performing an a priori guarantee. A task 7; of this kind, with
WCET C; and minimum inter-arrival time 7T;, can also be scheduled by a dedicated CBS
with parameters (Q, = C;, Ty = T — i) guaranteeing that each job J; ; will finish before the
relative deadline 7T; (see lemma 1).

The second kind of tasks is characterized by known WCET but unknown minimum inter-
arrival time: we have previously introduced these tasks saying that they are frequently used
to handle external events coming from an unpredictable environment. A task 7; of this kind,
with WCET C; can be scheduled by a dedicated TBS with bandwidth U, or with the RBE
model; it can also be scheduled by a dedicated CBS with parameters (Qs; = C;, Ty = %)
guaranteeing that each job J; ; will finish before the same deadline assigned by the TBS or
by the RBE. The QoS experimented by these tasks can be statistically guaranteed as showed
above.

The third kind of tasks is characterized by unknown WCET and known minimum inter-
arrival time: we have previously introduced these tasks saying that they are frequently used
to manage continuous media. A task 7; of this kind, can be scheduled by a dedicated CBS

19



\ H \ CBS: Q=3T=6

4 3
N\ \ DSS: C=3T=6
T T T T
4 3

Figure 8: Behavior of a CBS and a DSS in the absence of other real-time tasks.

performing a statistical guarantee (EDF or TBS or RBE cannot be used on these tasks
without jeopardizing the hard tasks schedulability).

The fourth kind of tasks is characterized by unknown WCET and minimum inter-arrival
time: they can be scheduled by a dedicated CBS, but performing a statistical guarantee is
too complex.

‘ WCET ‘ Min. interarr. time ‘ task type ‘ CBS behavior ‘ guarantee ‘

known known hard EDF deterministic

known unknown extern event | TBS, RBE probabilistic
handler

unknown | unknown CM task probabilistic

unknown | unknown

4 Simulation results

In this section we compare the CBS with other similar service mechanisms, namely the Total
Bandwidth Server (TBS) and the Dynamic Sporadic Server (DSS). The Constant Utilization
Server (CUS) is not considered in the graphs because it is very similar to the TBS (indeed,
slightly worse in performance for the reasons described in Section 3.1).

The main difference between DSS and CBS is visible when the budget is exhausted. In
fact, while the DSS becomes idle until the next replenishing time (that occurs at the server’s
deadline), the CBS remains eligible increasing the server’s deadline and replenishing the
budget immediately. This difference in the replenishing time, whose effects are illustrated in
Figure 8, causes a big difference in the performance offered by the two servers to soft real-
time tasks. The TBS does not suffer from this problem, however its correct behavior relies on
the exact knowledge of job’s WCETSs, so it cannot be used for supporting CM applications.
Moreover, since the CBS automatically reclaims any available idle time coming from early
completions, a reclaiming mechanism has been added to the plain TBS, as described in [16].

20



Hard task load = 0.5

900 T T T =
/. TBS ——
. CBS 4+
800 | DSS 8-
i

700 | i

600 |- .
7 o
[} ;.
£ g
o K
3 500 | :
= o
o J
S
o 400 | s
I
[
z

300 .

,’
200 | s g
=i
B
o
100 B :
. e 1
0 " " N N & N N N N y N - N & & grmmmtr====
0.48 0.485 0.49 0.495 0.5

Average soft load

Figure 9: First experiment (TBS, CBS and DSS).

All the simulations presented in this section have been conducted on a hybrid task set
consisting of 5 periodic hard tasks with fixed parameters and 5 soft tasks with variable
execution times and inter-arrival times. The execution times of the periodic hard tasks
are randomly generated in order to achieve a desired processor utilization factor Upgrq. The
execution and inter-arrival times of the soft tasks are uniformly distributed in order to obtain
a mean soft load m => r”f;:in] with m going from 0 to 1 — Upgpg.

The metric used to measure the‘performance of the service algorithms is the mean tar-
diness experienced by soft tasks. In fact, as already mentioned above, since in multimedia
applications meeting all soft deadlines could be impossible or very inefficient, the goal of the
system should be to guarantee all the hard tasks and minimize the mean time that soft tasks
execute after their deadlines.

In the first experiment, we compare the mean tardiness experienced by soft tasks when
they are served by a CBS, a TBS and a DSS. In this test, the utilization factor of periodic
hard tasks is Upqrg = 0.5. The simulation results are illustrated in Figure 9, which shows
that the performance of the DSS is dramatically worse than the one achieved by the CBS
and TBS. This result was expected for the reasons explained in Figure 8.

Figure 10 shows the same results, but without the DSS: the only difference is in the scale
of the y-axis. In this figure, the TBS and CBS curves can be better distinguished, so we
can see that the tardiness experienced by soft tasks under a CBS is slightly higher than that
experienced using a TBS. However, the difference is so small that can be neglected for any
practical purposes.

Figure 11 and Figure 12 illustrate the results of a similar experiment repeated with
Unhara = 0.7 and Upgrqg = 0.9 respectively. As we can see, the major difference in the per-
formance between CBS and TBS appears only for high periodic loads. Fortunately, this
situation is of little interest for most practical multimedia applications.

21



Average soft tardiness

Average soft tardiness

Hard task load = 0.5

25

20

15 -

80

0.485 0.49 0.495

Average soft load

Figure 10: First experiment (TBS and CBS).

Hard task load = 0.7

0.5

70

60 -

50

30 -

10 -

1
0.282

0.284 0.286 0.288 0.29 0.292 0.294

Average soft load
Figure 11: Second experiment.

22

0.296

0.298

0.3



Hard task load = 0.9

300 T T T T T T T T T
TBS ——
CBS -+
250 | A
- "K/
/*/
200 |
1]
[}
£
=
8
£ 150 |
(7]
[}
(o]
I
[}
2
100 |
50 |-
0 S 1 1 1 1
0 001 002 003 004 005 006 007 008 009 0.1

Average soft load

Figure 12: Third experiment.

When WCET; >> ¢;j the TBS can cause an underutilization of the processor. This fact
can be observed in Figure 13, which shows the results of a simulation similar to the previous
one, in which Ujg.q = 0.6, m = 0.4, the inter-arrival times are fixed, and the execution
times of the soft tasks are uniformly distributed with an increasing variance.

As can be seen from the graph, CBS performs better than TBS when ¢; varies a lot among
the jobs.

5 Implementation and experimental results

The proposed CBS mechanisms has been implemented on the HARTIK kernel [1, 10], to
support some sample multimedia applications.

The implementation of the CBS is relatively simple. In order to handle the budget
exhausted event, the budget of the running task must be decreased by the system while
the task executes. The simplest solution is to divide the time in ticks and assign each tick
to a CBS, wich budget is decreased by 1. This solution is used by the most part of the
existing operating systems (because it is very similar to the time quantum allocation in time
sharig), but has a problem: all the times in the system (and in particular the arrival time
rij, execution time ¢; ; and finish time f; ; of each job) must be multiple of a system tick.
Since the system tick cannot be too small (a tick less than 333 microseconds generates too
overhead), the imposition made on 7; ;, ¢; j, and f; ; is too restrictive.

If we don’t want these limitations on execution and inter-arrival time, we must manage
the budget in an approximated way: each tick is arbitary considered as assigned to a CBS
(that can be the CBS executing at the begin or at the end of the tick. This solution is simple,
efficent (it doesn’t introduce overhead) and has good performances, but doesn’t ensure that
the band required by a CBS is limited, so we decide to don’t use it.

23



Hard task load = 0.6

1600 T T T T T T T T T
1400
1200
174
8 1000
£
°
8
5 800 |
7]
)
o
I
2 600
400
200
0 4 — I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Computation times variance
Figure 13: Fourth experiment.

Another solution is to decrease the budget every time that a context switch occurs: if a
task executes from time 1 to time %o, its budget is decreased at time ¢y of a quantity equal to
to —t1. The problem is that, in this way, it is difficult to catch the exhausted budget event;
in fact, if a task executes from time #; to time ¢o and its budget at time ¢y is less than to — 1,
the task uses more than its reserved bandwidth! To avoid this problem, the budget must be
also updated at each tick; when at time ¢ a system primitive performs a context switch, the
time t7 of the next tick boundary is known, so the budget can be considered exhausted if it
is less than t7 — t.

This technique also introduce an approximation in the budget management, but doesn’t
require any imposition on r; j, ¢; j, and f; ; and still ensure that a CBS doesn’t require more
than its reserved bandwidth.

The introduced approximation invalidates Lemma 1, so it seems to be impossible to
schedule an hard task by a CBS. Moreover, it is possible to account this approximation in a
formula similar to Lemma 1, but to do this we need some additional definitions.

Definition 1 A TIM is the smallest time unit that can be measured (on a PC, TIM =
lusec).

Definition 2 A Tick is a time unit composed of T* TIM: the timer generates an interrupt
each Tick.

Definition 3 A Tick Boundary is a time T, 2T 3T .. in wich a timer interrupt arrives.
Let’s indicate the it" Tick Boundary as b; = iT%*.

Definition 4 A R-CBS (Real CBS) is a CBS implementation such that the budget is man-
aged in the following way:

24



0.18 T T T T T T T T T

0.16 - 4

0.14 —

0.12 —

0.1 | E

0.08 - B

0.06 B

0.04 -

0.02 -

0 1 1 1 ‘ ‘I 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
¢ (msec)

Figure 14: Task 1 execution times PDF.

e the budged is updated ad the context switch and at the Tick Boundaries;

e let to be a budget updating time, if the CPU was assigned to the R-CBS S in all the
time intervall [t1,t2], its budget is updated decreasing it by to — t1;

e when at time t1 a job served by R-CBS Ss is scheduled, the budget cs of the server is
considered exhsusted if cs < to — t1, being to the next Tick Boundary (to = min;{b; :
b; > tl}).

Lemma 2 A hard task 7; having WCET C; and minimum inter-arrival time T; is schedulable
by a R-CBS with parameters (Q; = C; + T, T, = T;) if and only if is schedulable by EDF.

Proof.
Being
Vi rijer — iy > Ty =T

each job is scheduled with an assigned absolute deadline r;; + T; and maximum budget
Qs = C; + T But
Vj,cij < Ci= Qs — T

so each job finishes before that its budget becomes less than 17Tick, hence also in the worst case
(the job begins to execute an e after a context switch, with € small as you want) the budget
will never be considered as exhausted. The absolute deadline assigned to the job doesn’t
change and remain equal to the deadline used by EDF scheduling alghotithm. Hence, the
scheduled is the same obtained assigning to 7; a relative deadline 7; and using EDF. O

25



0.16 T T T T T T T T T

0.14 B

0.12 4

0.1 -

o 0.08 - —

0.06 - _

0.04 - 1

0.02 - B

0 1 1 1 ‘ 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
¢ (msec)

Figure 15: Task 2 execution times PDF.

Once the CBS mechanisms has been built into the HARTIK kernel, we have implemented
an MPEG player and compared the performance with respect to a simple EDF scheduling
scheme. In our experiment, two periodic tasks decode the MPEG videos which frame decoding
time distributions are shown in Figures 14 and 15. Task 7; has required period 77 = 125ms
(frame rate: 8 frames per second) and task 7» has a required period T5 = 30ms (33 Fps).
Figure 16 reports the number of decoded frames as a function of time, when the two periodic
tasks are scheduled by EDF, activating = at ¢ = 2000. Since C; = 49ms, Co = 53ms
and 49/125 4+ 53/30 = 2.158 > 1 when 7, is activated the system becomes overloaded. In
fact, when 7y is the only task in the system, it runs at the required frame rete (8 Fps), but
when at time ¢ = 2000 74 is activated, 7 slows down to 4.4F'ps, while 79 begins to execute at
17.96 Fps. When 79 terminates, 71 increase its frame rate to the maximum possible (23, 8 Fips,
that corresponds to a period of about 42ms, which is the mean execution time for 7). After
this transition time, 7 returns to execute at 8 F'ps.

Figure 17 shows the number of decoded frames as a function of time, when the same
periodic tasks are scheduled by a two CBSs with parameters (Q,71) = (42,125) and
(Q2,T2) = (19,30). Being 42/125 + 19/30 = 0.969 < 1, the two servers are schedulable,
and being Q1 = 42 =~ ¢, 71 will execute at a frame rate near to the required.

From the figure is clear how the frame rate of 7 is about constant and has only two little
variations corresponding to the activation and the termination of 7 (remember that Q = ¢
is a limit condition). This is obtained slowing down the frame rate of 7 to 14.2 Fps: this
task is clearly overloaded (T < ¢3), so it is right that it is penalized by CBS.

Notice that the proposed mechanism automatically arrange the task periods without using
a-priori knowledge about the tasks’ execution times (clearly, a similar result could be obtained
changing Ty and T, according with Cy and C5 in order to not overload the system). The only
informations used by the CBS are the couple (Q;,T;) and the extimation of task execution

26



frame number

frame number

200

180

160

140

120

100

80

60

40

20

200

180

160

140

120

100

80

60

40

20

Scheduler EDF

Task1l — B
Task 2 ----
8 Fps
23.8 Fps 7
/ 17.96 Fps
/. —"4.44 Fps
ps s
/ 1 1 1 1
5000 10000 15000 20000 25000
t (msec)
Figure 16: Two MPEG players scheduled by EDF.
Scheduler CBS

T T T T

Task1l — B
Task 2 ----

, 8 Fps ’
142 Fps .

/ 1 1 1 1

5000 10000 15000 20000 25000
t (msec)

Figure 17: Two MPEG players scheduled by CBS.

27



Scheduler EDF con skip
200 T T T T T

180 Task1 — —
160 —
140 ]
8 Fps

120 b

100 - // _

frame number

/

/

80 | .
Y

60 -
A5 Fps

/~"4.51 Fps
20 | P .

ps /

0 / I I I I I
0 5000 10000 15000 20000 25000 30000

t (msec)

Figure 18: Two MPEG players scheduled by EDF with skip.

time given by the budget.

Figure 16 shows another undesirable effect: when 79 terminates, the frame rate of 7
increases to its maximum value (more than the required rate), in order to terminate in the
same time instant in which it would terminate if 75 was not activated. This phenomenon
causes an acceleration of the movie that appears unnatural and unpleasant. This problem
can be solved using a skip strategy to serve soft tasks: when a job finish after its absolute
deadline, the next jobs is skipped in order to finish correctly.

Implementing a skip strategy to serve soft periodic tasks, the indesiderable effects dis-
appares (as shown in Figure 18), but there is another problem, visible in an exeperiment in
wich the same movie is decoded by two identical tasks, with Uso s & 1.

It is easy to see that, although the two tasks have the same period, they proceed with
different speeds. This is due to the fact that the system is overloaded. In fact, if

C1,j + €2,j

Usoft = =1

TLj+1 = Tg T25+1 =72,

then Ugopy = %1 + % > 1.

Figure 19 shows the number of decoded frames as a function of time when the two tasks
are served by an EDF algorith implementing skip: it is visible how the two movies aren’t
reproduced at the same rate.

In Figure 20 is showed how the CBS scheduling doesn’t soffer this problem. This figure
shows the results of an experiment in which the two tasks are served by two identical CBSs
with parameters Q; = ¢1; = ¢z ; and Ts = 2(Q), (the parameters are equal because the two
tasks play the same video). The result of this test clearly shows that the CBS introduces a
form of fairness in the scheduling and allows the two tasks to proceed at the same rate.

28



Decoded frames

Decoded frames

EDF with

skip

200 T T T T

180 -

160 -

140 -

120

100

80 -

40

20

0 2000 4000 6000 8000 10000

Time (ms)

12000

14000

16000

18000 20000

Figure 19: Two identical MPEG players scheduled by EDF with skip.

CBS Scheduling

200 T T T T

180 -

160 -

140 -

120

100

60

20

Ta —-—
k2 - |

0 1 1 1 1
0 2000 4000 6000 8000

Time

10000

12000

14000

16000

Figure 20: Two identical MPEG players scheduled by CBS.

29

18000



6

Conclusions

In this paper, we presented a novel service mechanism, the Constant Bandwidth Server, for
integrating hard real-time and soft multimedia computing in a single system, under the EDF
scheduling algorithm. The server has been formally analyzed and compared with other known
servers, obtaining very interesting results. The proposed model has also been implemented
on the HARTIK kernel and used to support typical multimedia applications.

In order to use proposed model in more general situations, the following issues need to

be investigated:

e handling resource constraints: a concurrency control protocol needs to be integrated

with the method to avoid priority inversion when accessing shared resources;

supporting adaptive applications: a served task could use the difference between the
current CBS deadline and its deadline to evaluate the request in excess and react
accordingly. Such a kind of feedback could be used for adjusting the QoS in overload
conditions.

supporting more applications in the same system: the CBS mechanism can be used to
safely partition the CPU bandwidth among different applications that could coexist in
the same system, as shown in [2].

dynamic QoS management: a task can be used as a QoS manager to change dynami-
cally the bandwidth reserved to each multimedia task. The strategies for changing the
parameters of each CBS still have to be investigated.

References

[1]

2]

G. C. Buttazzo. “hartik: A real-time kernel for robotics applications”. In IEEE Real-
Time Systems Symposium, December 1993.

Z. Deng and J. W. S. Liu. “scheduling real-time applications in open envirovment”. In
IEEE Real-Time Systems Symposium, San Francisco, 1997.

Z. Deng, J. W. S. Liu, and J. Sun. “a scheme for scheduling hard real-time applications
in open system envirovment”. In Ninth Euromicro Workshop on Real-Time Systems,
Toledo, 1997.

T. M. Ghazalie and T.P. Baker. “aperiodic servers in a deadline scheduling environment”.
Real-Time Systems, (9), 1995.

Ramesh Govindan and D. P. Anderson. “scheduling and ipc mechanisms for continuous
media”. In ACM Symposium on Operating Systems Principles, Pacific Grove, 1991.

Pawan Goyal, Xingang Guo, and Harrik M. Vin. “a hierical cpu scheduler for multimedia
operating systems”. In 2nd OSDI Symposium, 1996.

K. Jeffay and D. Bennet. “a rate-based execution abstraction for multimedia computing”.
In Network and Operating System Support for Digital Audio and Video, 1995.

K. Jeffay, D. L. Stone, and F. D. Smith. “kernel support for live digital audio and video”.
Computer Communications, 15(6), 1992.

30



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Hiroyuki Kaneko, John A. Stankovic, Subhabrata Sen, and Krithi Ramamritham. “inte-
grated scheduling of multimedia and hard real-time tasks”. In IEEE Real Time System
Symposium, 1996.

G. Lamastra, G. Lipari, G. Buttazzo, A. Casile, and F. Conticelli. “hartik 3.0: A portable
system for developing real-time applications”. In Real-Time Computing Systems and
Applications, October 1997.

C. L. Liu and J. Layland. “scheduling alghorithms for multiprogramming in a hard
real-time environment”. Journal of the ACM, 1973.

Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. “processor capacity reserves
for multimedia operating systems”. Technical report, Carnegie Mellon University, Pitts-
burg, May 1993.

B. Sprunt, L. Sha, and J. P. Lehoczky. “aperiodic scheduling for hard real-time systems”.
The Journal of Real-Time Systems, (1), 1989.

M. Spuri and G. Buttazzo. “scheduling aperiodic tasks in dynamic priority systems”.
Real-Time Systems, 10, 1996.

M. Spuri and G. C. Buttazzo. “efficient aperiodic service under the earliest deadline
scheduling”. In IEEE Real-Time Systems Symposium, december 1994.

Marco Spuri, Giorgio Buttazzo, and Fabrizio Sensini. “robust aperiodic scheduling under
dynamic priority systems”. In IEEE Real-Time Systems Symposium, December 1995.

Tan Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E. Gehrke,
and C. Greg Plaxton. “a proportional share resource allocation algorithm for real-time,
time-shared systems”. In IEEE Real Time System Symposium, 1996.

31



