
Server Me
hanisms for Multimedia Appli
ations

Lu
a Abeni

S
uola Superiore S. Anna, Pisa

lu
a�hartik.sssup.it

Abstra
t

This paper fo
uses on the problem of providing eÆ
ient run-time support to multi-

media appli
ations in a real-time system, where three types of tasks 
an 
oexist simulta-

neously: multimedia, soft real-time, and hard real-time tasks. Hard tasks are guaranteed

based on worst 
ase exe
ution times and minimum inter-arrival times, whereas multime-

dia and soft tasks are served based on mean parameters. The paper des
ribes a server

based me
hanism for s
heduling soft and multimedia tasks without jeopardizing the a

priori guarantee of hard real-time a
tivities. The performan
e of the proposed method

is 
ompared with that of similar servi
e me
hanisms through extensive simulation ex-

periments and several multimedia appli
ations have been implemented on the HARTIK

kernel.

1 Introdu
tion

Re
ent evolution of te
hnology makes personal 
omputers powerful enough to handle multi-

media streams, so there is a great interest in providing support to 
ontinuous media appli
a-

tions (CM appli
ations from now on). Nevertheless, allowing CM a
tivities to 
oexist with

other appli
ations with di�erent timing requirements (su
h as hard, soft real-time, and non

real-time tasks) is still an open issue.

In fa
t, from one hand, CM a
tivities as audio and video streams need real-time support

be
ause of their sensitivity to delay and jitter. On the other hand, however, the use of a

hard real-time system for handling CM appli
ations 
an be inappropriate for the following

reasons:

� If a multimedia task manages 
ompressed frames, the time for 
oding/de
oding ea
h

frame 
an vary signi�
antly, hen
e the worst 
ase exe
ution time (WCET) of the task


an be mu
h bigger than its mean exe
ution time. Sin
e hard real-time tasks are guaran-

teed based on their WCET (and not based on mean exe
ution times), CM appli
ations


an 
ause a waste of the CPU resour
e.

� Providing a pre
ise estimation of WCETs is very diÆ
ult even for those appli
ations

always running on the same hardware. This problem is even more 
riti
al for multimedia

appli
ations, whi
h in general 
an run on a large number of di�erent ma
hines (think

of a video 
onferen
ing system running on several di�erent PC workstations).

� When data are re
eived from an external devi
e (for instan
e, a 
ommuni
ation net-

work) the inter-arrival time of the tasks that pro
ess su
h data may not be deterministi
,

so it may be impossible to determine a minimum inter-arrival time for su
h tasks. As

a 
onsequen
e, no a priori guarantee 
an be performed.
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� Advan
ed multimedia systems tend to be more dynami
 than 
lassi
al real-time sys-

tems, so all the s
heduling methodologies devi
ed for stati
 real-time systems are not

suited for CM appli
ations.

For the reasons mentioned above, a large part of the multimedia 
ommunity 
ontinues to use


lassi
al operating systems, as Unix or Windows, to manage CM. Re
ently, some s
heduling

algorithms have been proposed [17, 6℄ to mix some form of real-time support with a notion of

fairness, but they do not make use of 
onventional real-time theory. Sin
e we are interested

in systems based on a 
onventional RT s
heduler (su
h as EDF or RM), we will not 
onsider

this kind of solutions.

Anderson et al. in [5℄ des
ribe a multimedia operating system based on an EDF s
heduler,

however the quality of servi
e (QoS) 
an only be guaranteed based on the WCET of ea
h

task and based on a model of the external events that 
an a
tivate a task (they use a Linear

Bounded Arrival Pro
ess).

In [8℄, Je�ay presents a hard real-time system based on EDF s
heduling to be used

as a test-bet for video 
onferen
e appli
ations; the system 
an guarantee ea
h task at its


reation time based on its WCET and its minimum inter-arrival time. While a bound for

the WCET 
an be found, the inter-arrival time may not have a lower bound, be
ause of

the unpredi
tability of the network (whi
h may even reverse the order of messages at the

re
eption site). For this reason, Je�ay in [7℄ introdu
es the Rate-Based Exe
ution (RBE)

task model, whi
h is independent from the minimum inter-arrival time. Although this kind

of task 
annot be guaranteed to 
omplete within a given deadline, it is possible to guarantee

that it will not jeopardize the s
hedulability of other hard real-time tasks present in the

system.

In [12℄, Mer
er, Savage, and Tokuda propose a s
heme based on CPU 
apa
ity reserves,

where a fra
tion of the CPU bandwidth is reserved to ea
h task. A reserve is a 
ouple (C

i

; T

i

)

indi
ating that a task �

i


an exe
ute for at most C

i

units of time in ea
h period T

i

. This

approa
h solves the problem of knowing the WCET of ea
h task, be
ause it �xes the maximum

time that ea
h task 
an exe
ute in its period. Sin
e the periodi
 s
heduler is based on the

Rate Monotoni
 algorithm, the 
lassi
al s
hedulability analysis 
an be applied to guarantee

hard tasks, if present. The only problem with this method is that overload situations on

multimedia tasks are not handled eÆ
iently. In fa
t, if a task instan
e exe
utes for more

than C

i

units of time, the remaining portion of the instan
e is s
heduled in ba
kground,

prolonging its 
ompletion of an unpredi
table time.

In [9℄, Kaneko et al. propose a s
heme based on a periodi
 pro
ess (the multimedia server)

dedi
ated to the servi
e of all multimedia requests. This allows to ni
ely integrate multimedia

tasks together with hard real time tasks; however, being the server only one, it is not easy to


ontrol the QoS of ea
h task.

In [2℄, Liu and Deng des
ribe a s
heduling hierar
hy whi
h allows hard real-time, soft

real-time, and non real-time appli
ations to 
oexist in the same system, and to be 
reated

dynami
ally. A

ording to this approa
h, whi
h uses the EDF s
heduling algorithm as a low-

level s
heduler, ea
h appli
ation is handled by a dedi
ated server, whi
h 
an be a Constant

Utilization Server [3℄ for tasks that do not use nonpreemptable se
tions or global resour
es,

and a Total Bandwidth Server [14, 15℄ for the other tasks. This solution 
an be used to isolate

the e�e
ts of overloads at the appli
ation level, rather than at the task level. Moreover, the

method requires the knowledge of the WCET even for soft and non real-time tasks.

In this paper, we propose a s
heduling methodology based on reserving a fra
tion of the

pro
essor bandwidth to ea
h task (in a way similar to pro
essor 
apa
ity reserves of Mer
er
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[12℄). However, to eÆ
iently handle the problem of task overloads, ea
h task is s
heduled by

a dedi
ated server, whi
h does not require the knowledge of the WCET and assigns a suitable

deadline to the served task whenever the reserved time is 
onsumed.

The rest of the paper is organized as follows: Se
tion 2 spe
i�es our notation, de�nitions

and basi
 assumptions; Se
tion 3 des
ribes our s
heduling s
heme in detail and its formal

properties; Se
tion 4 
ompares the proposed algorithm with other server me
hanisms, and

presents some simulation results; Se
tion 5 des
ribes an implementation of the proposed

algorithm on the HARTIK kernel and shows some experimental results; and, �nally, Se
tion

6 presents our 
on
lusions and future work.

2 Terminology and assumptions

2.1 basi
 de�nitions

We 
onsider a system 
onsisting of three types of tasks: hard, soft, and non real-time tasks.

Any task �

i


onsists of a sequen
e of jobs J

i;j

, where r

i;j

denotes the arrival time (or request

time) of the j

th

job of task �

i

.

A hard real-time task is 
hara
terized by two additional parameters, (C

i

; T

i

), where C

i

is

the WCET of ea
h job and T

i

is the minimum inter-arrival time between su

essive jobs, so

that r

i;j+1

� r

i;j

+ T

i

. The system must provide an a priori guarantee that all jobs of a hard

task must 
omplete before a given deadline d

i;j

. In our model, the absolute deadline of ea
h

hard job J

i;j

is impli
itly set at the value d

i;j

= r

i;j

+ T

i

.

A soft real-time task is also 
hara
terized by the parameters (C

i

; T

i

), however the timing


onstraints are more relaxed. In parti
ular, for a soft task, C

i

represents the mean exe
ution

time of ea
h job, whereas T

i

represents the desired a
tivation period between su

essive jobs.

For ea
h soft job J

i;j

, a soft deadline is set at time d

i;j

= r

i;j

+T

i

. Sin
e mean values are used

for the 
omputation time and minimum inter-arrival times are not known, soft tasks 
annot

be guaranteed a priori. In multimedia appli
ations, soft deadline misses may de
rease the

QoS, but do not 
ause 
riti
al system faults. To predi
t the QoS that 
an be a
hieved by the

system, a statisti
al guarantee 
ould be requested; for example, by providing the probability

for a job of �nishing before its deadline. In this work, our goal is to s
hedule soft tasks to

minimize the mean tardiness, without jeopardizing the s
hedulability of the hard tasks. The

tardiness E

i;j

of a job J

i;j

is de�ned as

E

i;j

= maxf0; f

i;j

� d

i;j

g (1)

where f

i;j

is the �nishing time of job J

i;j

.

A non real-time task is a task without timing 
onstraints. Nothing is assumed to be known

about non real-time tasks. Our goal is to s
hedule them as soon as possible, preserving the

s
hedulability of the hard tasks and the QoS statisti
ally guaranteed for soft tasks.

Finally, a periodi
 task is a task (hard or soft) in whi
h the inter-arrival time between

su

essive jobs is exa
tly equal to T

i

for all jobs (r

i;j+1

= r

i;j

+ T

i

). Periodi
 tasks do not

have spe
ial treatment in this model.

Let D

i

(t

1

; t

2

) the 
omputation time required by task �

i

in the time intervals [t

1

; t

2

℄:

D

i

(t

1

; t

2

) =

X

j:r

i;j

�t

1

^d

i;j

�t

2




i;j
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Figure 1: MPEG de
oding times.

we say that task �

i

requires a bandwidth B

i

if

B

i

= max

t

1

;t

2

f

D

i

(t

1

; t

2

)

t

2

� t

1

g:

Sin
e from [11℄ is known that the bandwidth B

i

required by an hard real-time task �

i

is

C

i

T

i

and that a task set � is s
hedulable if

P

i

B

i

� U

lub

(with U

lub

= 1 using EDF and

U

lub

= 0:69 using RM), it is easy to perform an a priori guarantee on hard tasks: if � is


omposed only of hard tasks, the guarantee test is

X

i

C

i

T

i

< U

lub

.

2.2 Soft tasks

Tasks that manage CM 
an be modeled as soft real-time tasks, be
ause missing deadlines

may de
rease the QoS without 
ausing 
atastrophi
 
onsequen
es. Moreover, CM a
tivities

are typi
ally 
hara
terized by highly variable exe
ution times, 
ausing the WCET to be mu
h

greater than the mean exe
ution time. As an example, Figure 1 shows the de
oding times of

various frames in a typi
al MPEG video stream.

For the reasons mentioned above, treating CM tasks as hard real-time tasks is not ap-

propriate, �rstly be
ause an underestimation of the WCET would 
ompromise the guarantee

done on the other tasks, and se
ondly be
ause it would be very ineÆ
ient, sin
e trying to

guarantee a task with a WCET mu
h greater than its mean exe
ution time would 
ause a

waste of the CPU resour
e.
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This problem 
an be solved by a bandwidth reservation strategy, whi
h assigns ea
h

soft task a maximum bandwidth, 
al
ulated using the mean exe
ution time and the desired

a
tivation period, in order to in
rease CPU utilization. For using a bandwidth reservation

strategy, it is needed a me
hanism to s
hedule a soft real-time task �

i

in order to ensure that

its required bandwidth B

i

is no more than the reserved bandwidth.

In this way, if a task needs more than its reserved bandwidth, it may slow down, but it

will not jeopardize the s
hedulability of the other tasks: this is the isolation property, that

ensure that a task overload will remain isolate to the task. By reserving a bandwidth B

i

to

ea
h task and isolating the e�e
ts of task overloads, an a priori guarantee 
an be performed

using the 
lassi
al s
hedulability analysis

X

i

B

i

� U

lub

:

2.3 Server me
hanisms

Our s
heduling s
heme is based on EDF algorithm, be
ause it permits a better CPU utiliza-

tion (for EDF U

lub

= 1, for RM U

lub

= 0:69), so we propose to s
hedule hard tasks jobs J

i;j

by their absolute deadlines d

i;j

= r

i;j

+T

i

, and to s
hedule ea
h other job J

k;h

by an absolute

deadline d

k;h

assigned to it in order to require a band B

k

. For doing this, we need a me
h-

anism, 
alled server, to assign an absolute deadline to a job: a server re
eives 
omputation

time requests (jobs) in input and serves them assigning a dynami
 absolute deadline to ea
h

of them.

The arriving jobs are enqueued in a queue of pending requests a

ording to a given

(arbitrary) non-preemptive dis
ipline (e.g., FIFO) and the �rst job of the queue is served

assigning a deadline to it and eventually putting it in the s
heduler ready queue (sin
e we

use an EDF s
heduler, this queue is ordered by absolute deadlines). If the �rst job of a

server's pending request queue is in the ready queue, the server is said to be eligible, else it

is not eligible; the server is said to be a
tive when the �rst job of its pending request queue

is exe
uting.

A server S

s


an serve a job J

i;j

dividing it in smaller blo
ks, ea
h of them will be

assigned a �xed absolute deadline, named 
hunks: J

i;j

is served dividing it in m 
hunks

H

i;j;1

;H

i;j;2

; :::;H

i;j;m

, ea
h of them is 
hara
terized by a release time r

i;j;k

a deadline d

i;j;k

,

a �nish time f

i;j;k

and a 
omputation time 


i;j;k

. In general, r

i;j;1

� r

i;j

and r

i;j;k+1

� f

i;j;k

,

where the major sign holds if the server is not eligible between r

i;j

and r

i;j;1

(or between f

i;j;k

and r

i;j;k+1

).

The exe
ution time required by a server S

s


an be de�ned similarly to the exe
ution time

required by a task �

i

:

D

s

(t

1

; t

2

) =

X

r

i;j;k

�t

1

^d

i;j;k

�t

2




i;j;k

the bandwidth required by a server is de�ned exa
tly as that required by a task.

In order to be usable for realizing the isolation property, a server must require a limited

bandwidth B

i

: the server 
an limit its required band in two way:

� be
oming not eligible every time that it 
an require too mu
h exe
ution time

� in
reasing the deadline of the served jobs in order to not require too mu
h exe
ution

time
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The �rst solution is used by some budget-based servers (like the Dynami
 Sporadi


Server): to ea
h server is assigned a budget that de
reases when the server is a
tive; when the

budget be
omes 0, the server be
omes not eligible and it will return eligible at a replenishing

time 
al
ulated to limit the band to B

s

.

The se
ond solution is used by a 
lass of servers (like the Total Bandwidth Server) that

remains ever eligible while their pending request queue is not empty: we 
all them non-idle

servers. Also if a budget is not used in the de�nition, a non idle server 
an be thought as


hara
terized by a budget that is immediately replenished when it arrives to 0.

S
heduling a task �

i

by a dedi
ated limited band server S

s

that requires a bandwidth B

s

,

we 
an ensure that the bandwidth required by �

i

is B

s

, so a bandwidth reservation strategy


an be used.

3 Multimedia Servers

To integrate the three 
lasses of tasks in the same system, hard tasks are s
heduled by the

EDF algorithm based on their absolute deadlines, ea
h soft task is handled by a dedi
ated

server, whereas non real-time tasks 
an be handled by a single server: any 
onventional

dynami
 priority server like the Dynami
 Sporadi
 Server or the Total Bandwidth Server or

other 
an be used for this purpose.

3.1 Existent servers

The servi
e me
hanisms that have inspired this work are the Dynami
 Sporadi
 Server (DSS)

[14, 4℄ and the Total Bandwidth Server (TBS) [14, 15℄.

The DSS is a dynami
 version of the Sporadi
 Server, originally proposed by Sprunt, Sha

and Lehozky [13℄ for �xed priority systems: whereas the Sporadi
 Server has a �xed priority


hosen a

ording to the RM algorithm, the DSS has a dynami
 priority assigned through a

suitable deadline. The deadline assignment and the budget replenishment are de�ned by the

following rules:

� When the server is 
reated, its budget 


s

is initialized to its maximum value.

� The next replenishment time RT and the 
urrent server deadline d

s

are set as soon as




s

> 0 and there is an aperiodi
 request pending. If t

a

is su
h time, then RT = d

s

=

t

A

+ T

s

.

� The replenishing amount RA to be done at time RT is 
omputed when the last aperiodi


request is 
ompleted or 


s

has been exhausted. If t

I

is su
h a time, then the value of

RA is set equal to the budget 
onsumed within the interval [t

a

; t

I

℄

The TBS is a simple and eÆ
ient aperiodi
 servi
e me
hanism based on the idea of

assigning ea
h aperiodi
 request a deadline su
h that the overall pro
essor utilization due

to the aperiodi
 load never ex
eeds the maximum value U

s

. In parti
ular, when the k

th

aperiodi
 request arrives at time t = r

k

, it re
eives a deadline

d

k

= maxfr

k

; d

k�1

g+

C

k

U

s

where C

k

is the exe
ution time of the request and U

s

is the server utilization fa
tor (that is,

its bandwidth). By de�nition, d

0

= 0. An expli
it budget is not used in the original de�nition
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DSS: C=3 T=6

c1=4 c2=3

TBS: B=0.5

c1=4 c2=3

d1 d2

CUS: B=0.5

c1=4 c2=3

d1 d2

d1 d2 d3 t

t

t

Figure 2: Comparison of three di�erent dynami
 servers: DSS, TBS, and CUS.

of the TBS, but the server 
an be thought as 
hara
terized by a budget that is replenished

at C

k

at time r

k

.

Liu and Deng in [3℄ proposed a server me
hanism very similar to TBS, the Constant

Utilization Server (CUS), whi
h di�ers only for the replenishing time, whi
h o

urs at time

maxfr

k

; d

k�1

g rather than at r

k

as for the TBS.

While the isolation property 
an be realized independently by the kind of server used (it

is only important that the server require a limited band),the QoS a
hieved by a soft task

depends on the type of server adopted to serve it. If a single task is overloaded (it needs more

than the reserved band), it is possible that some of its jobs �nish after their soft deadlines:

we say that this task is late. If there is some idle time (a fra
tion of the CPU bandwidth is

free) a late task would have to use it to exit the late state. If the idle time is due to early


ompletion of some previous jobs of the late task, also a server that not have the non-idle

property 
an re
laim this time, but if the idle time is due to a total utilization fa
tor less then

1 or to early 
ompletions of other tasks jobs, only a non-idle server 
an re
laim this time.

This di�eren
e between a non-idle server and a server that doesn't have this property

is visible in �gure 2. In this �gure we 
an see the same soft task served by three di�erent

servers: the TBS, the DSS and the Constant Utilization Server (CUS), proposed by Dend

and Liu in [3℄. The TBS, that is a non-idle server, 
an use additional ba
kground time to
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redu
e the response times, while the others two servers (the DSS or the CUS), that haven't

the non-idle property, 
annot exe
ute for a time greater than (t

2

� t

1

)U

s

in ea
h interval

[t

1

; t

2

℄ even though the system is underloaded.

From a performan
e point of view, the TBS would be the right 
hoi
e to serve multimedia

tasks, so let's 
onsider a multimedia task served by a dedi
ated TBS: ea
h job J

i;j

is assigned

a deadline

d

i;j

= maxfr

i;j

; d

i;j�1

g+

C

i

U

s

that 
an also be written as

d

i;j

=

(

r

i;j

+ T

s

if j = 1

maxfr

i;j

; d

i;j�1

g+ T

s

otherwise

with T

s

=

C

i

U

s

.

In [7℄, Je�ay proposed a Rate Based Exe
ution (RBE) model, in whi
h ea
h task �

i

is


hara
terized by three parameters (X

i

; Y

i

;D

i

) and the jobs deadline are 
al
ulated a

ording

to the following rule:

d

i;j

=

(

r

i;j

+D

i

if 1 � j � X

i

maxfr

i;j

; d

i;j�1

g+ T

s

otherwise

It is easy to see how the deadlines generated serving a soft task with a dedi
ated TBS are

exa
tly the same deadlines assigned to the jobs by an RBE(1; T

s

; T

s

) model.

3.2 The Constant Bandwidth Server

It is easy to understand how to give the maximum possible QoS to a multimedia task, it must

be served by a non-idle server, like the TBS. Unfortunately, the TBS presents a problem:

we said that behavior of the server must guarantee that, if U

s

is the fra
tion of pro
essor

time assigned to a server (i.e., its bandwidth), its 
ontribution to the total utilization fa
tor

is no greater than U

s

, even in the presen
e of overloads. Noti
e that in our hypothesis (no

knowledge about the soft tasks WCETs and minimum inter-arrival times) this property, also

belonging to a Dynami
 Sporadi
 Server (DSS) [14, 4℄, is not valid for a Total Bandwidth

Server (TBS) [14℄, nor for a Constant Utilization Server (CUS) [3℄, whose a
tual 
ontributions

are limited by U

s

under the assumption that all the served jobs do not exe
ute more than

the de
lared WCET. Also the RBE model, that we said to assign the same deadlines as TBS,

needs the knowledge of the tasks WCETs to guarantee ea
h job to �nish before its deadline.

We need a non-idle server (whose performan
e is 
omparable with the one a
hievable by

a TBS) that doesn't need any information about WCETs and minimum inter-arrival times

(like the DSS): this last property is obtainable only using a budget-based me
hanism similar

to whi
h used by DSS. To provide these two properties we introdu
e the Constant Bandwidth

Server (CBS), de�ned as follows:

� A CBS is 
hara
terized by a budget 


s

and by a ordered pair (Q

s

; T

s

), where Q

s

is the

maximum budget and T

s

is the period of the server. The ratio U

s

= Q

s

=T

s

is denoted

as the server bandwidth. At ea
h instant, a �xed deadline d

s;k

is asso
iated with the

server. At the beginning d

s;0

= 0.

� Ea
h served job J

i;j

is assigned a dynami
 deadline d

i;j

equal to the 
urrent server

deadline d

s;k

.
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τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c1=3 c2=2

r1 r2 r3

t1 t2 t3

d2 d3c3=1d1

Figure 3: Simple example of CBS s
heduling.

� Whenever a served job exe
utes, the budget 


s

is de
reased by the same amount.

� When 


s

= 0, the server budget is re
harged to the maximum value Q

s

and a new server

deadline is generated as d

s;k+1

= d

s;k

+ T

s

. Noti
e that there are no �nite intervals of

time in whi
h the budget is equal to zero.

� A CBS is said to be a
tive at time t if there are pending jobs (remember the budget 


s

is

always greater than 0); that is, if there exists a served job J

i;j

su
h that r

i;j

� t < f

i;j

.

A CBS is said to be idle at time t if it is not a
tive.

� When a job J

i;j

arrives and the server is a
tive the request is enqueued in a queue of

pending jobs a

ording to a given (arbitrary) non-preemptive dis
ipline (e.g., FIFO).

� When a job J

i;j

arrives and the server is idle, if 


s

� (d

s;k

�r

i;j

)U

s

the server generates a

new deadline d

s;k+1

= r

i;j

+T

s

and 


s

is re
harged to the maximum value Q

s

, otherwise

the job is served with the last server deadline d

s;k

using the 
urrent budget.

� When a job �nishes, the next pending job, if any, is served using the 
urrent budget

and deadline. If there are no pending jobs, the server be
omes idle.

� At any instant, a job is assigned the last deadline generated by the server.

Figure 3 illustrates an example in whi
h a hard periodi
 task, �

1

, is s
heduled together

with a soft task, �

2

served by a CBS having a budget Q

s

= 2 and a period T

s

= 7. The �rst

job of �

2

arrives at time r

1

= 2, when the server is idle. Being 


s

� (d

s;0

�r

1

)U

s

, the deadline

assigned to the job is d

s;1

= r

1

+ T

s

= 9 and 


s

is re
harged at Q

s

= 2. At time t

1

= 6 the

budget is exhausted, so a new deadline d

s;2

= d

s;1

+T

s

= 16 is generated and 


s

is replenished.

At time r

2

the se
ond job arrives when the server is a
tive, so the request is enqueued. When

the �rst job �nishes the se
ond job is served with the a
tual server deadline (d

s;2

= 16). At

time t

2

= 16 the server budget is exhausted so a new server deadline d

s;3

= d

s;2

+ t

s

= 23 is

generated and 


s

is replenished to Q

s

. The third job arrives at time 17, when the server is

idle and 


s

= 1 < (d

s;3

� r

3

)U

s

= (23� 17)

2

7

= 1:71, so it is s
heduled with the a
tual server

deadline d

s;3

without 
hanging the budget.

In Figure 4, a hard periodi
 task, �

1

, is s
heduled together with a soft task, �

2

, having

�xed inter-arrival time (T

2

= 7) and variable 
omputation time, with a mean value equal to

C

2

= 2. This situation is typi
al in appli
ations that manage 
ontinuous media: for example,

9



τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c1=2

d1 d3d2

c3=2c2=3

t1 t2 t3

Figure 4: Example of CBS serving a task with variable exe
ution time and 
onstant inter-

arrival time.

τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c3=2d2 d3c1=2 c2=2 d1

t1 t2 t3

Figure 5: Example of CBS serving a task with 
onstant exe
ution time and variable inter-

arrival time.

a video stream requires to be played periodi
ally, but the de
oding/playing time of ea
h

frame is not 
onstant. In this example, to optimize the pro
essor utilization, �

2

is served by

a CBS with a maximum budget equal to the mean 
omputation time of the task (Q

s

= 2)

and a period equal to the task period (T

s

= 7).

As we 
an see from Figure 4, the se
ond job of task �

2

is �rst assigned a deadline d

s;2

=

r

2

+ T

s

. At time t

2

, however, sin
e 


s

is exhausted and the job is not �nished, the job is

s
heduled with a new deadline d

s;3

= d

s;2

+ T

s

. As a result of a longer exe
ution, only the

soft task is delayed, while the hard task meets all its deadlines. Moreover, noti
e that the

ex
eeding portion of the late job is not exe
uted in ba
kground, but is s
heduled with a

suitable dynami
 priority.

In other situations, frequently en
ountered in CM appli
ations, tasks have �xed 
omputa-

tion times but variable inter-arrival times. For example, this is the 
ase of a task a
tivated by

external events, su
h a driver pro
ess a
tivated by interrupts 
oming from a 
ommuni
ation

network. In this 
ase, the CBS behaves exa
tly like a TBS with a bandwidth U

s

= Q

s

=T

s

. In

fa
t, if C

i

= Q

s

ea
h job �nishes exa
tly when the budget arrives to 0, so the server deadline is

in
reased of T

s

. It is also interesting to observe that, in this situation, the CBS is also equiv-

alent to a Rate-Based Exe
ution (RBE) model [7℄ with parameters x = 1; y = T

i

;D = T

i

.

An example of su
h a s
enario is depi
ted in Figure 5.
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H 1,1

J1

a
1,1

d1,1 d2,2

1,2H

J2

a
2,1

a
2,2

d1,2 =d 2,1

H 2,2

a
1,2

H

c=4 c=4

2,1

Figure 6: Serving some jobs divided in 
hunks.

3.3 CBS properties

The proposed CBS servi
e me
hanism presents some interesting properties that make it

suitable for supporting CM appli
ations. The most important one, the the isolation property

is formally expressed by the following theorem.

Theorem 1 A CBS with parameters (Q

s

; T

s

) requires a band U

s

=

Q

s

T

s

Proof.

To prove the theorem, we show that a CBS with parameters (Q

s

; T

s

) 
annot o

upy a band-

width greater than U

s

= Q

s

=T

s

. That is, if D

s

(t

1

; t

2

) is the pro
essor demand of the CBS in

the interval [t

1

; t

2

℄, we show that

8t

1

; t

2

2 N : t

2

> t

1

; D

s

(t

1

; t

2

) �

Q

s

T

s

(t

2

� t

1

):

We re
all that under a CBS a job J

j

is assigned an absolute time-varying deadline d

j

whi
h 
an be postponed if the task requires more than the reserved bandwidth. Thus, ea
h

job J

j


an be thought as 
onsisting of a number of 
hunks H

j;k

, ea
h 
hara
terized by a

release time a

j;k

and a �xed deadline d

j;k

. An example of 
hunks produ
ed by a CBS is

shown in Figure 6. To simplify the notation, we indi
ate all the 
hunks generated by a server

with an in
reasing index k (in the example of Figure 6, H

1;1

= H

1

, H

1;2

= H

2

, H

2;1

= H

3

,

and so on).

The release time and the deadline of the k

th


hunk generated by the server will be denoted

by a

k

and d

k

, 
 will indi
ate the a
tual budget and n the number of requests in server queue.

These variables are initialized in the following manner:

d

0

= 0


 = 0

n = 0

k = 0

Using these notations, the server behavior 
an be expressed as in �gure 7.

Indi
ating with e

k

the server time demanded in the interval [a

k

; d

k

℄ (that is, the exe
ution

time of 
hunk H

k

), we 
an say that

8t

1

; t

2

; 9k

1

; k

2

: D

s

(t

1

; t

2

) =

X

k:a

k

�t

1

^d

k

�t

2

e

k

=

k2

X

k=k

1

e

k

:
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When job J

j

arrives at time r

j

enqueue the request in the server pending request queue;

n = n + 1;

if (n == 1) /* (the server is idle) */

if (r

j

+ (
 / Q

s

) * T

s

>= d

k

)

/*---------------Rule 1---------------*/

k = k + 1;

a

k

= r

j

;

d

k

= a

k

+ T

s

;


 = Q

s

;

else

/*---------------Rule 2---------------*/

k = k + 1;

a

k

= r

j

;

d

k

= d

k�1

;

/* 
 remains un
hanged */

When job J

j

terminates

dequeue J

j

from the server queues;

n = n - 1;

if (n != 0) begin to serve the next job in queue with deadline d

k

;

When job J

j

served by S

s

exe
utes for a time unit


 = 
 - 1;

When (
 == 0)

/*---------------Rule 3---------------*/

k = k + 1;

a

k

= a
tual time();

d

k

= d

k�1

+ T;


 = Q

s

;

Figure 7: The CB algorithm.
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If 


s

(t) is the server budget at time t and f

k

is the time at whi
h 
hunk H

k

ends to

exe
ute, we 
an see that 


s

(f

k

) = 


s

(a

k

)� e

k

, while 


s

(a

k+1

) is 
al
ulated from 


s

(f

k

) in the

following manner:




s

(a

k+1

) =

(




s

(f

k

) if d

k+1

was generated by Rule 2

Q

s

if d

k+1

was generated by Rule 1 or 3:

Using these observations, the theorem 
an be proved by showing that:

D

s

(a

k

1

; d

k

2

) + 


s

(f

k

2

) � (d

k

2

� a

k

1

)

Q

s

T

s

:

We pro
eed by indu
tion on k

2

�k

1

, using the algorithmi
 de�nition of CBS shown in Figure

7.

Indu
tive base. If in [t

1

; t

2

℄ there is only one a
tive 
hunk (k

1

= k

2

= k), two 
ases have

to be 
onsidered.

Case a: d

k

< a

k

+ T

s

.

If d

k

< a

k

+ T

s

, then d

k

is generated by Rule 2, so a

k

+




s

(f

k�1

)

Q

s

T

s

< d

k

and a

k

= f

k�1

,

that is

a

k

+




s

(a

k

)

Q

s

T

s

< d

k

:

Being 


s

(f

k

) = 


s

(a

k

)� e

k

= 


s

(a

k

)�D

s

(a

k

; d

k

), we have

a

k

+

D

s

(a

k

; d

k

) + 


s

(f

k

)

Q

s

T

s

< d

k

hen
e

D

s

(a

k

; d

k

) + 


s

(f

k

) < (d

k

� a

k

)

Q

s

T

s

:

Case b: d

k

= a

k

+ T

s

.

If d

k

= a

k

+ T

s

, then D

s

(a

k

; d

k

) + 


s

(f

k

) = e

k

+ 


s

(f

k

) = Q

s

. Hen
e, in both 
ases, we

have:

D

s

(a

k

1

; d

k

2

) + 


s

(f

k

2

) = D

s

(a

k

; d

k

) + 


s

(f

k

) � (d

k

� a

k

)

Q

s

T

s

= (d

k

2

� a

k

1

)

Q

s

T

s

:

Indu
tive step. The indu
tive hypothesis

D

s

(a

k

1

; d

k

2

�1

) + 


s

(f

k

2

�1

) � (d

k

2

�1

� a

k

1

)

Q

s

T

s

is used to prove that

D

s

(a

k

1

; d

k

2

) + 


s

(f

k

2

) � (d

k

2

� a

k

1

)

Q

s

T

s

:

Given the possible relations between d

k

and d

k�1

, three 
ases have to be 
onsidered:

� d

k

� d

k�1

+ T

s

. That is, d

k

is generated by Rule 3 or Rule 1 when r

j

� d

j�1

.
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� d

k

= d

k�1

. That is, d

k

is generated by Rule 2.

� d

k�1

< d

k

< d

k�1

+ T

s

. That is, d

k

is generated by Rule 1 when r

j

< d

j�1

.

Case a: d

k

2

= d

k

2

�1

+ T

s

.

In this 
ase d

k

2


an be generated only by Rule 1 or 3. Adding e

k

2

to both sides of the

indu
tive hypothesis, we obtain:

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + e

k

2

and, sin
e 


s

(f

k

) = 


s

(a

k

)� e

k

, we have

k

2

X

k=k

1

e

k

� (d

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + 


s

(a

k

2

)� 


s

(f

k

2

):

Sin
e d

k

2

is generated by Rule 1 or 3, it must be 


s

(a

k

2

) = Q

s

, therefore:

k

2

X

k=k

1

e

k

� (d

k2�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) +Q

s

� 


s

(f

k

2

)

k

2

X

k=k

1

e

k

+ 


s

(f

k

2

) � (d

k2�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) +Q

s

� (d

k

2

�1

� a

k

1

)

Q

s

T

s

+Q

s

and �nally

D

s

(a

k

1

; d

k

2

) + 


s

(f

k

2

) � (d

k2�1

� a

k

1

)

Q

s

T

s

+Q

s

= (d

k2�1

+ T

s

� a

k

1

)

Q

s

T

s

D

s

(a

k

1

; d

k

2

) + 


s

(f

k

2

) � (d

k

2

� a

k

1

)

Q

s

T

s

:

Case b: d

k

2

= d

k

2

�1

.

If d

k

2

= d

k

2

�1

, then d

k

2

is generated by Rule 2. In this 
ase,

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + e

k

2

but, being d

k

2

= d

k

2

�1

, 


s

(f

k

2

) + e

k

= 


s

(a

k

2

) and 


s

(a

k

2

) = 


s

(f

k

2

�1

) (by Rule 2), we have:

k

2

X

k=k

1

e

k

� (d

k

2

� a

k

1

)

Q

s

T

s

� 


s

(a

k

2

) + e

k

2

= (d

k

2

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

)

hen
e

D

s

(k

1

; k

2

) + 


s

(f

k

2

) =

k

2

X

k=k

1

e

k

� (d

k

2

� a

k

1

)

Q

s

T

s

:

Case 
: d

k

2

�1

< d

k

2

< d

k

2

�1

+ T

s

.
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If d

k

2

< d

k

2

�1

+ T

s

, d

k

2

is generated by Rule 1, so a

k

2

+




s

(f

k

2

�1

)

Q

s

T

s

� d

k

2

�1

, hen
e


(f

k

2

�1

) � (d

k

2

�1

� a

k

2

)

Q

s

T

s

. Applying the indu
tive hypothesis, we obtain

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + e

k

2

from whi
h we have

k

2

X

k=k

1

e

k

� (d

k

2

�1

� a

k

1

)

Q

s

T

s

� (d

k

2

�1

� a

k

2

)

Q

s

T

s

+ e

k

2

k

2

X

k=k

1

e

k

� (d

k

2

�1

� d

k

2

�1

� a

k

1

+ a

k

2

)

Q

s

T

s

+ e

k

2

:

Now, being e

k

2

= Q

s

� 


s

(f

k

2

), we have:

k

2

X

k=k

1

e

k

� (�a

k

1

+ a

k

2

)

Q

s

T

s

+Q

s

� 


s

(f

k

2

) = (a

k

2

+ T � a

k

1

)

Q

s

T

s

� 


s

(f

k

2

)

but, from Rule 1 and 3, we have d

k

= a

k

+ T , so we 
an write

k

2

X

k=k

1

e

k

� (d

k

2

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

)

hen
e

D

s

(k

1

; k

2

) + 


s

(f

k

2

) =

k

2

X

k=k

1

e

k

� (d

k

2

� a

k

1

)

Q

s

T

s

:

2

The isolation property allows us to use a bandwidth reservation strategy to allo
ate

a fra
tion of the CPU time to ea
h task that 
annot be guaranteed a priori. The most

important 
onsequen
e of this result is soft task 
an be s
hedules together with hard tasks

without a�e
ting the a priori guarantee even in the 
ase in whi
h soft requests ex
eed the

expe
ted load.

In addition to the isolation property, the CBS has the following 
hara
teristi
s.

� No hypothesis are required on the WCET and the minimum inter-arrival time of the

served tasks: this allows the same program to be used on di�erent systems without

re
al
ulating the 
omputation times.

� Lemma 1 A hard task �

i

with parameters (C

i

; T

i

) is s
hedulable by a CBS with param-

eters Q

s

= C

i

and T

s

= T

i

if and only if �

i

is s
hedulable without the CBS.

Proof.

For any job of a hard task we have that r

i;j+1

� r

i;j

= T

i

and 


i;j

� Q

i

. Hen
e, by

de�nition of the CBS, ea
h hard job is assigned a deadline d

i;j

= r

i;j

+ T

i

and it is

s
heduled with a budget Q

i

= C

i

. Moreover, sin
e 


i;j

� Q

i

, ea
h job �nishes no later

than the budget is exhausted, hen
e the deadline assigned to a job does not 
hange and

is exa
tly the same as the one used by EDF. 2
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� The CBS automati
ally re
laims any spare time 
aused by early 
ompletions. This

is due to the fa
t that whenever the budget is exhausted, it is always immediately

replenished at its full value and the server deadline is postponed. In this way, the

server remains eligible and the budget 
an be exploited by the pending requests with

the 
urrent deadline. This is the main di�eren
e with respe
t to the pro
essor 
apa
ity

reserves proposed by Mer
er et al.

� Knowing the statisti
al distribution of the 
omputation time of a task served by a CBS,

it is possible to perform a statisti
al guarantee, expressed in terms of probability for

ea
h served job to meet its deadline.

3.4 Statisti
al guarantee

To perform a statisti
al guarantee on soft tasks served by CBS, we 
an model a CBS as a

queue, where ea
h arriving job J

i;j


an be viewed as a request of 


i;j

time units. At any time,

the request at the head of the queue is served using the 
urrent server deadline, so that it is

guaranteed that Q

s

units of time 
an be 
onsumed within this deadline.

We analyze the following 
ases: a) variable 
omputation time and 
onstant inter-arrival

time (see also Figure 4); and b) 
onstant 
omputation time and variable inter-arrival time

(see also Figure 5).

Case a.

If the jobs inter-arrival times are 
onstant and equal to T

s

and the jobs exe
ution times are

randomly distributed with a given probability distribution fun
tion, the CBS 
an be modeled

with a D

G

=D=1 queue: ea
h T

s

units of time a request of 


j

units arrives and at most Q

s

units 
an be served. We 
an de�ne a random pro
ess v

j

as follows:

v

1

= 


1

v

j

= maxf0; v

j�1

�Q

s

g+ 


i;j

where v

j

indi
ates the length of the queue (in time units) at time (j � 1)T

s

, that is the units

of times that are still to be server when the job J

i;j

arrives. It 
an easily be shown that the

absolute deadline before whi
h J

i;j

will �nish is

Æ

j

= r

i;j

+

�

v

j

Q

s

�

T

s

:

If �

(j)

k

= Pfv

j

= kg is the state probability of pro
ess v

j

and C

h

= Pf


j

= hg is the

probability that an arriving job requires h exe
ution time units (sin
e 


j

is time invariant,

C

h

doesn't depend on j), it is quite easy to 
al
ulate the value of �

(j)

k

:

�

(j)

k

= Pfv

j

= kg = Pfmaxfv

j�1

�Q

s

; 0g+ 


j

= kg

�

(j)

k

=

1

X

h=�1

Pfmaxfv

j�1

�Q

s

; 0g + 


j

= k ^ v

j�1

= hg:
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Being v

j

greater than 0 by de�nition, the sum 
an be 
al
ulated for h going from 0 to in�nity:

�

(j)

k

=

1

X

h=0

Pfmaxfv

j�1

�Q

s

; 0g+ 


j

= kjv

j�1

= hgPfv

j�1

= hg =

=

1

X

h=0

Pfmaxfh�Q

s

; 0g + 


j

= kgPfv

j�1

= hg =

=

Q

s

X

h=0

Pf


j

= kgPfv

j�1

= hg+

1

X

h=Q

s

+1

Pfh�Q

s

+ 


j

= kgPfv

j�1

= hg =

=

Q

s

X

h=0

C

k

�

(j�1)

h

+

1

X

h=Q

s

+1

Pf


j

= k � h+Q

s

g�

(j�1)

h

=

=

Q

s

X

h=0

C

k

�

(j�1)

h

+

1

X

h=Q

s

+1

C

k�h+Q

s

�

(j�1)

h

Equation

�

(j)

k

=

Q

s

X

h=0

C

k

�

(j�1)

h

+

1

X

h=Q

s

+1

C

k�h+Q

s

�

(j�1)

h

(2)


an be writen in matrix form

�

(j)

=M�

(j�1)

(3)

de�ning

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

Q

s

+1

z }| {

C

0

C

0

: : : C

0

C

1

C

1

: : : C

1

C

2

C

2

: : : C

2

C

3

C

3

C

3

: : :

: : :

: : :

0 0 : : :

C

0

0 : : :

C

1

C

0

0 : :

C

2

C

1

C

0

0 :

: : : : :

: : : :

: : :

1

C

C

C

C

C

C

C

C

C

C

C

C

A

and �

(j)

=

0

B

B

B

B

B

B

B

B

B

B

B

�

�

(j)

0

�

(j)

1

�

(j)

2

�

(j)

3

:

:

:

1

C

C

C

C

C

C

C

C

C

C

C

A

Case b.

In the 
ase in whi
h job exe
ution times are 
onstant and equal to Q

s

(8j; 


i;j

= Q

s

) and

jobs inter-arrival times are distributed a

ording to a given distribution fun
tion, ea
h job

is assigned a deadline d

i;j

= maxfr

i;j

; d

i;j�1

g + T

s

, identi
al to that assigned by a TBS. In

this situation, the CBS 
an be modeled by a G=D=1 queue: jobs arrive in the queue with a

randomly distributed arrival time and the server 
an pro
ess a request ea
h T

s

time units. We


an de�ne a random pro
ess w

j

as w

j

= d

i;j

�r

i;j

�T

s

, so we have d

i;j+1

= r

i;j+1

+T

s

+w

i;j+1

.

In this way, it is easy to �nd the distribution of the relative deadlines d

i;j

� r

i;j

within whi
h

a job J

i;j

is served. In fa
t,

w

i;j

= d

i;j

� r

i;j

� T

s

) d

i;j

� r

i;j

= w

i;j

+ T

s

:
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Sin
e d

i;j

= maxfr

i;j

; d

i;j�1

g+ T

s

, we have

w

j+1

= d

i;j+1

� T

s

� r

i;j+1

= maxfr

i;j+1

; d

i;j

g+ T

s

� T

s

� r

i;j+1

=

= maxf0; d

i;j

� r

i;j+1

g = maxf0; r

i;j

+w

j

+ T

s

� r

i;j+1

g =

= maxf0; w

j

� a

j+1

+ T

s

g

having de�ned a

j+1

= r

i;j+1

� r

i;j

. Being a

j

is a sto
hasti
 stationary and time invariant

pro
ess and w

j

a Markov pro
ess, the matrixM des
ribing the w

j

Markov 
hain 
an be found

de�ning �

(j)

k

= Pfw

j

= kg and A

h

= Pfa

j

= hg.

�

(j)

k

= Pfw

j

= kg = Pfmaxf0; w

j�1

� a

j

+ T

s

g = kg =

=

1

X

h=�1

Pfmaxf0; w

j�1

� a

j

+ T

s

g = k ^ w

j�1

= hg =

=

1

X

h=�1

Pfmaxf0; w

j�1

� a

j

+ T

s

g = kjw

j�1

= hgPfw

j�1

= hg =

=

1

X

h=�1

Pfmaxf0; h � a

j

+ T

s

g = kgPfw

j�1

= hg =

In order to simplify the 
al
ulus, we 
an distinguish two 
ases: k = 0 and k > 0:

�

(j)

0

=

1

X

h=�1

Pfh� a

j

+ T

s

� 0gPfw

j�1

= hg =

=

1

X

h=�1

Pfa

j

� h+ T

s

gPfw

j�1

= hg =

=

1

X

h=0

1

X

r=h+T

s

Pfa

j

= rg�

(j�1)

h

=

=

1

X

h=0

1

X

r=h+T

s

A

r

�

(j�1)

h

8k > 0; �

(j)

k

=

1

X

h=�1

Pfh� a

j

+ T

s

= kgPfw

j�1

= hg =

=

1

X

h=�1

Pfa

j

= h� k + T

s

g�

(j�1)

h

=

=

1

X

h=0

A

h�k+T

s

�

(j�1)

h

Matrix M des
ribing the Markov 
hain is so

M =

0

B

B

B

B

B

B

B

B

B

B

�

�

0

�

1

�

2

: : 0 0 0 : : :

A

T

s

+1

A

T

s

A

T

s

�1

: : A

0

0 0 : : :

A

T

s

+2

A

T

s

+1

A

T

s

A

T

s

�1

: A

1

A

0

0 0 : :

A

T

s

+3

A

T

s

+2

A

T

s

+1

A

T

s

: A

2

A

1

A

0

0 0 :

: : : : : : : : : :

: : : : : : : : :

: : : : : : : :

1

C

C

C

C

C

C

C

C

C

C

A
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with

�

i

=

1

X

r=i+T

s

A

r

:

For a generi
 queue, it is known that the queue is stable (i.e., the number of elements in

the queue do not diverge to in�nity) if � =

mean interarrival time

mean servi
e time

< 1.

Hen
e, the stability 
an be a
hieved under the following 
onditions:




i;j

� Q

s

in 
ase a)

r

i;j+1

� r

i;j

� T

s

in 
ase b)

In general,




i;j

r

i;j+1

� ri; j

�

Q

s

T

s

:

If this 
ondition is not satis�ed the di�eren
e between the deadline d

i;j

assigned by the

server to a job J

i;j

and the job release time r

i;j

will in
rease inde�nitely. This means that,

for preserving the s
hedulability of the other tasks, �

i

will slow down in an unpredi
table

manner.

If a queue is stable, a stationary solution of the Markov 
hain des
ribing the queue 
an be

found; that is, it exists a solution � su
h that � = lim

j!1

�

(j)

, so � =M�. This solution


an be approximated trun
ating the in�nite dimension matrixM to an NxN matrixM

0

and

solving the eigenve
tor problem �

0

=M

0

�

0

with some numeri
al 
al
ulus te
hniques.

The knowledge of the probability distribution fun
tion of the relative deadlines before

whi
h a multimedia task job is guaranteed to �nish is useful to guarantee a QoS to ea
h task

and to 
hoose the right (Q

s

; T

s

) parameters for ea
h soft task.

3.5 Con
lusions on CBS

We introdu
ed the CB server to serve soft tasks, but the CBS behavior is more general and

this kind of server 
an be used to serve ea
h kind of task. To see this, we distinguish four

kind of tasks basing on the exe
ution/inter-arrival times varian
e.

The �rst kind of tasks is 
hara
terized by known WCET and minimum inter-arrival

time: we have previously referred this tasks as hard real-time tasks, saying that they 
an

be s
heduled using EDF performing an a priori guarantee. A task �

i

of this kind, with

WCET C

i

and minimum inter-arrival time T

i

, 
an also be s
heduled by a dedi
ated CBS

with parameters (Q

s

= C

i

; T

s

= T � i) guaranteeing that ea
h job J

i;j

will �nish before the

relative deadline T

i

(see lemma 1).

The se
ond kind of tasks is 
hara
terized by known WCET but unknown minimum inter-

arrival time: we have previously introdu
ed these tasks saying that they are frequently used

to handle external events 
oming from an unpredi
table environment. A task �

i

of this kind,

with WCET C

i


an be s
heduled by a dedi
ated TBS with bandwidth U

s

or with the RBE

model; it 
an also be s
heduled by a dedi
ated CBS with parameters (Q

s

= C

i

; T

s

=

C

i

U

s

)

guaranteeing that ea
h job J

i;j

will �nish before the same deadline assigned by the TBS or

by the RBE. The QoS experimented by these tasks 
an be statisti
ally guaranteed as showed

above.

The third kind of tasks is 
hara
terized by unknown WCET and known minimum inter-

arrival time: we have previously introdu
ed these tasks saying that they are frequently used

to manage 
ontinuous media. A task �

i

of this kind, 
an be s
heduled by a dedi
ated CBS
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Figure 8: Behavior of a CBS and a DSS in the absen
e of other real-time tasks.

performing a statisti
al guarantee (EDF or TBS or RBE 
annot be used on these tasks

without jeopardizing the hard tasks s
hedulability).

The fourth kind of tasks is 
hara
terized by unknown WCET and minimum inter-arrival

time: they 
an be s
heduled by a dedi
ated CBS, but performing a statisti
al guarantee is

too 
omplex.

WCET Min. interarr. time task type CBS behavior guarantee

known known hard EDF deterministi


known unknown extern event TBS, RBE probabilisti


handler

unknown unknown CM task probabilisti


unknown unknown

4 Simulation results

In this se
tion we 
ompare the CBS with other similar servi
e me
hanisms, namely the Total

Bandwidth Server (TBS) and the Dynami
 Sporadi
 Server (DSS). The Constant Utilization

Server (CUS) is not 
onsidered in the graphs be
ause it is very similar to the TBS (indeed,

slightly worse in performan
e for the reasons des
ribed in Se
tion 3.1).

The main di�eren
e between DSS and CBS is visible when the budget is exhausted. In

fa
t, while the DSS be
omes idle until the next replenishing time (that o

urs at the server's

deadline), the CBS remains eligible in
reasing the server's deadline and replenishing the

budget immediately. This di�eren
e in the replenishing time, whose e�e
ts are illustrated in

Figure 8, 
auses a big di�eren
e in the performan
e o�ered by the two servers to soft real-

time tasks. The TBS does not su�er from this problem, however its 
orre
t behavior relies on

the exa
t knowledge of job's WCETs, so it 
annot be used for supporting CM appli
ations.

Moreover, sin
e the CBS automati
ally re
laims any available idle time 
oming from early


ompletions, a re
laiming me
hanism has been added to the plain TBS, as des
ribed in [16℄.
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Figure 9: First experiment (TBS, CBS and DSS).

All the simulations presented in this se
tion have been 
ondu
ted on a hybrid task set


onsisting of 5 periodi
 hard tasks with �xed parameters and 5 soft tasks with variable

exe
ution times and inter-arrival times. The exe
ution times of the periodi
 hard tasks

are randomly generated in order to a
hieve a desired pro
essor utilization fa
tor U

hard

. The

exe
ution and inter-arrival times of the soft tasks are uniformly distributed in order to obtain

a mean soft load U

soft

=

P

i




i;j

r

i;j+1

�r

i;j

with U

soft

going from 0 to 1� U

hard

.

The metri
 used to measure the performan
e of the servi
e algorithms is the mean tar-

diness experien
ed by soft tasks. In fa
t, as already mentioned above, sin
e in multimedia

appli
ations meeting all soft deadlines 
ould be impossible or very ineÆ
ient, the goal of the

system should be to guarantee all the hard tasks and minimize the mean time that soft tasks

exe
ute after their deadlines.

In the �rst experiment, we 
ompare the mean tardiness experien
ed by soft tasks when

they are served by a CBS, a TBS and a DSS. In this test, the utilization fa
tor of periodi


hard tasks is U

hard

= 0:5. The simulation results are illustrated in Figure 9, whi
h shows

that the performan
e of the DSS is dramati
ally worse than the one a
hieved by the CBS

and TBS. This result was expe
ted for the reasons explained in Figure 8.

Figure 10 shows the same results, but without the DSS: the only di�eren
e is in the s
ale

of the y-axis. In this �gure, the TBS and CBS 
urves 
an be better distinguished, so we


an see that the tardiness experien
ed by soft tasks under a CBS is slightly higher than that

experien
ed using a TBS. However, the di�eren
e is so small that 
an be negle
ted for any

pra
ti
al purposes.

Figure 11 and Figure 12 illustrate the results of a similar experiment repeated with

U

hard

= 0:7 and U

hard

= 0:9 respe
tively. As we 
an see, the major di�eren
e in the per-

forman
e between CBS and TBS appears only for high periodi
 loads. Fortunately, this

situation is of little interest for most pra
ti
al multimedia appli
ations.
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ond experiment.
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Figure 12: Third experiment.

When WCET

i

>> 


i;j

the TBS 
an 
ause an underutilization of the pro
essor. This fa
t


an be observed in Figure 13, whi
h shows the results of a simulation similar to the previous

one, in whi
h U

hard

= 0:6, U

soft

= 0:4, the inter-arrival times are �xed, and the exe
ution

times of the soft tasks are uniformly distributed with an in
reasing varian
e.

As 
an be seen from the graph, CBS performs better than TBS when 


i

varies a lot among

the jobs.

5 Implementation and experimental results

The proposed CBS me
hanisms has been implemented on the HARTIK kernel [1, 10℄, to

support some sample multimedia appli
ations.

The implementation of the CBS is relatively simple. In order to handle the budget

exhausted event, the budget of the running task must be de
reased by the system while

the task exe
utes. The simplest solution is to divide the time in ti
ks and assign ea
h ti
k

to a CBS, wi
h budget is de
reased by 1. This solution is used by the most part of the

existing operating systems (be
ause it is very similar to the time quantum allo
ation in time

sharig), but has a problem: all the times in the system (and in parti
ular the arrival time

r

i;j

, exe
ution time 


i;j

and �nish time f

i;j

of ea
h job) must be multiple of a system ti
k.

Sin
e the system ti
k 
annot be too small (a ti
k less than 333 mi
rose
onds generates too

overhead), the imposition made on r

i;j

, 


i;j

, and f

i;j

is too restri
tive.

If we don't want these limitations on exe
ution and inter-arrival time, we must manage

the budget in an approximated way: ea
h ti
k is arbitary 
onsidered as assigned to a CBS

(that 
an be the CBS exe
uting at the begin or at the end of the ti
k. This solution is simple,

eÆ
ent (it doesn't introdu
e overhead) and has good performan
es, but doesn't ensure that

the band required by a CBS is limited, so we de
ide to don't use it.
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Another solution is to de
rease the budget every time that a 
ontext swit
h o

urs: if a

task exe
utes from time t

1

to time t

2

, its budget is de
reased at time t

2

of a quantity equal to

t

2

� t

1

. The problem is that, in this way, it is diÆ
ult to 
at
h the exhausted budget event;

in fa
t, if a task exe
utes from time t

1

to time t

2

and its budget at time t

1

is less than t

2

� t

1

,

the task uses more than its reserved bandwidth! To avoid this problem, the budget must be

also updated at ea
h ti
k; when at time t a system primitive performs a 
ontext swit
h, the

time t

T

of the next ti
k boundary is known, so the budget 
an be 
onsidered exhausted if it

is less than t

T

� t.

This te
hnique also introdu
e an approximation in the budget management, but doesn't

require any imposition on r

i;j

, 


i;j

, and f

i;j

and still ensure that a CBS doesn't require more

than its reserved bandwidth.

The introdu
ed approximation invalidates Lemma 1, so it seems to be impossible to

s
hedule an hard task by a CBS. Moreover, it is possible to a

ount this approximation in a

formula similar to Lemma 1, but to do this we need some additional de�nitions.

De�nition 1 A TIM is the smallest time unit that 
an be measured (on a PC, TIM =

1�se
).

De�nition 2 A Ti
k is a time unit 
omposed of T

tk

TIM: the timer generates an interrupt

ea
h Ti
k.

De�nition 3 A Ti
k Boundary is a time T

tk

; 2T

tk

; 3T

tk

; ::: in wi
h a timer interrupt arrives.

Let's indi
ate the i

th

Ti
k Boundary as b

i

= iT

tk

.

De�nition 4 A R-CBS (Real CBS) is a CBS implementation su
h that the budget is man-

aged in the following way:
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ution times PDF.

� the budged is updated ad the 
ontext swit
h and at the Ti
k Boundaries;

� let t

2

be a budget updating time, if the CPU was assigned to the R-CBS S

s

in all the

time intervall [t

1

; t

2

℄, its budget is updated de
reasing it by t

2

� t

1

;

� when at time t

1

a job served by R-CBS S

s

is s
heduled, the budget 


s

of the server is


onsidered exhsusted if 


s

< t

2

� t

1

, being t

2

the next Ti
k Boundary (t

2

= min

i

fb

i

:

b

i

> t

1

g).

Lemma 2 A hard task �

i

having WCET C

i

and minimum inter-arrival time T

i

is s
hedulable

by a R-CBS with parameters (Q

s

= C

i

+ T

tk

; T

s

= T

i

) if and only if is s
hedulable by EDF.

Proof.

Being

8j; r

i;j+1

� r

i;j

� T

i

= T

s

ea
h job is s
heduled with an assigned absolute deadline r

i;j

+ T

i

and maximum budget

Q

s

= C

i

+ T

tk

. But

8j; 


i;j

� C

i

= Q

s

� T

tk

so ea
h job �nishes before that its budget be
omes less than 1T i
k, hen
e also in the worst 
ase

(the job begins to exe
ute an � after a 
ontext swit
h, with � small as you want) the budget

will never be 
onsidered as exhausted. The absolute deadline assigned to the job doesn't


hange and remain equal to the deadline used by EDF s
heduling alghotithm. Hen
e, the

s
heduled is the same obtained assigning to �

i

a relative deadline T

i

and using EDF. 2
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Figure 15: Task 2 exe
ution times PDF.

On
e the CBS me
hanisms has been built into the HARTIK kernel, we have implemented

an MPEG player and 
ompared the performan
e with respe
t to a simple EDF s
heduling

s
heme. In our experiment, two periodi
 tasks de
ode the MPEG videos whi
h frame de
oding

time distributions are shown in Figures 14 and 15. Task �

1

has required period T

1

= 125ms

(frame rate: 8 frames per se
ond) and task �

2

has a required period T

2

= 30ms (33 Fps).

Figure 16 reports the number of de
oded frames as a fun
tion of time, when the two periodi


tasks are s
heduled by EDF, a
tivating �

2

at t = 2000. Sin
e C

1

= 49ms, C

2

= 53ms

and 49=125 + 53=30 = 2:158 > 1 when �

2

is a
tivated the system be
omes overloaded. In

fa
t, when �

1

is the only task in the system, it runs at the required frame rete (8 Fps), but

when at time t = 2000 �

2

is a
tivated, �

1

slows down to 4:4Fps, while �

2

begins to exe
ute at

17:96Fps. When �

2

terminates, �

1

in
rease its frame rate to the maximum possible (23; 8Fps,

that 
orresponds to a period of about 42ms, whi
h is the mean exe
ution time for �

1

). After

this transition time, �

1

returns to exe
ute at 8Fps.

Figure 17 shows the number of de
oded frames as a fun
tion of time, when the same

periodi
 tasks are s
heduled by a two CBSs with parameters (Q

1

; T

1

) = (42; 125) and

(Q

2

; T

2

) = (19; 30). Being 42=125 + 19=30 = 0:969 < 1, the two servers are s
hedulable,

and being Q

1

= 42 � 


1

, �

1

will exe
ute at a frame rate near to the required.

From the �gure is 
lear how the frame rate of �

1

is about 
onstant and has only two little

variations 
orresponding to the a
tivation and the termination of �

2

(remember that Q = 


is a limit 
ondition). This is obtained slowing down the frame rate of �

2

to 14:2 Fps: this

task is 
learly overloaded (T

2

< 


2

), so it is right that it is penalized by CBS.

Noti
e that the proposed me
hanism automati
ally arrange the task periods without using

a-priori knowledge about the tasks' exe
ution times (
learly, a similar result 
ould be obtained


hanging T

1

and T

2

a

ording with C

1

and C

2

in order to not overload the system). The only

informations used by the CBS are the 
ouple (Q

i

; T

i

) and the extimation of task exe
ution
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Figure 16: Two MPEG players s
heduled by EDF.
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time given by the budget.

Figure 16 shows another undesirable e�e
t: when �

2

terminates, the frame rate of �

1

in
reases to its maximum value (more than the required rate), in order to terminate in the

same time instant in whi
h it would terminate if �

2

was not a
tivated. This phenomenon


auses an a

eleration of the movie that appears unnatural and unpleasant. This problem


an be solved using a skip strategy to serve soft tasks: when a job �nish after its absolute

deadline, the next jobs is skipped in order to �nish 
orre
tly.

Implementing a skip strategy to serve soft periodi
 tasks, the indesiderable e�e
ts dis-

appares (as shown in Figure 18), but there is another problem, visible in an exeperiment in

wi
h the same movie is de
oded by two identi
al tasks, with U

soft

� 1.

It is easy to see that, although the two tasks have the same period, they pro
eed with

di�erent speeds. This is due to the fa
t that the system is overloaded. In fa
t, if

U

soft

=




1;j

r

1;j+1

� r

1;j

+




2;j

r

2;j+1

� r

2;j

= 1

then U

soft

=

C

1

T

1

+

C

2

T

2

> 1.

Figure 19 shows the number of de
oded frames as a fun
tion of time when the two tasks

are served by an EDF algorith implementing skip: it is visible how the two movies aren't

reprodu
ed at the same rate.

In Figure 20 is showed how the CBS s
heduling doesn't so�er this problem. This �gure

shows the results of an experiment in whi
h the two tasks are served by two identi
al CBSs

with parameters Q

s

= 


1;j

= 


2;j

and T

s

= 2Q

s

(the parameters are equal be
ause the two

tasks play the same video). The result of this test 
learly shows that the CBS introdu
es a

form of fairness in the s
heduling and allows the two tasks to pro
eed at the same rate.
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Figure 19: Two identi
al MPEG players s
heduled by EDF with skip.
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6 Con
lusions

In this paper, we presented a novel servi
e me
hanism, the Constant Bandwidth Server, for

integrating hard real-time and soft multimedia 
omputing in a single system, under the EDF

s
heduling algorithm. The server has been formally analyzed and 
ompared with other known

servers, obtaining very interesting results. The proposed model has also been implemented

on the HARTIK kernel and used to support typi
al multimedia appli
ations.

In order to use proposed model in more general situations, the following issues need to

be investigated:

� handling resour
e 
onstraints: a 
on
urren
y 
ontrol proto
ol needs to be integrated

with the method to avoid priority inversion when a

essing shared resour
es;

� supporting adaptive appli
ations: a served task 
ould use the di�eren
e between the


urrent CBS deadline and its deadline to evaluate the request in ex
ess and rea
t

a

ordingly. Su
h a kind of feedba
k 
ould be used for adjusting the QoS in overload


onditions.

� supporting more appli
ations in the same system: the CBS me
hanism 
an be used to

safely partition the CPU bandwidth among di�erent appli
ations that 
ould 
oexist in

the same system, as shown in [2℄.

� dynami
 QoS management: a task 
an be used as a QoS manager to 
hange dynami-


ally the bandwidth reserved to ea
h multimedia task. The strategies for 
hanging the

parameters of ea
h CBS still have to be investigated.
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