
2026/02/11 13:58 1/12 Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1

worldwide open-source software - https://wwoss.ru/

Пишем собственный WYSIWYG редактор на
основе веб-компонентов и textarea. Часть 1

Вступление

 Всем привет, последние пару месяцев я активно изучаю тему
веб‑компонентов, собираю и нарабатываю опыт, а затем делюсь
своими наработками с другими с целью обменяться опытом,
получить новый опыт, фидбек и понять куда двигается разработка
в вебе и шагать дальше за новым опытом. Все ниже изложенное не
является инструкцией как делать нужно, а является примером

того, как сделать возможно на текущий момент в 2023 году, у меня уже набрался небольшой
опыт (8 публикаций и 3 веб‑компонента на гитхабе) и я решился попробовать сделать что‑то
серьезнее чем просто очередную реактивную кнопку или лайки, в первой части моей
публикации я проведу вас по MVP веб‑компонента wc-wisywig, немного затронем философию
семантики, браузерные API и обменяемся опытом, потестим HTML5 теги в статье на хабре. Для
нетерпеливых сразу вот ссылка на демо и git репозиторий. Остальных ждет техничесий
лонгрид, прошу под кат)

Техническая основа и база редактора

В базовой функциональности редактора, важно предусмотреть фундамент для будущего
развития веб‑компонента, а также реализовать работу с API основных возможностей которые
дают нам браузеры, но также важно знать меру и не переусердствовать, в качестве базы мы
могли бы взять некий bootstrap или tailwind для стилей, а для формочек некий react\vue чтобы
не морочиться с биндингом данных, а еще затащить иконочный шрифт чтобы не морочиться с
иконками, но тогда весь фундаментальный смысл расширяемости просто бы пропал, зато
появилась необходимость поддерживать версии библиотек в node_modules, сегодняшний пост
совсем не об этом, мы будем писать на TypeScript используя ESNext стиль и вообще не будем
использовать полифилы. Но все‑таки чтобы не писать много лапши и получить код с хорошей
читаемостью и оформлением, я воспользуюсь самодельной функцией el которая просто будет
выполнять действия над возвращаемым Element из функции document.createElement

В каком‑то смысле можно сказать, что веб‑компонент wc-wysiwyg написан на функциональных
компонентах основанных на браузерном DOM, в модном ныне SSR этому компоненту делать
нечего, он просто добавляет возможностей к редактированию текста внутри textarea на
клиенте.

/**
 * Short document.createElement
 * @param tagName element tag name
 * @param params list of object params for document.createElements
 * @returns
 */
 export const el = (tagName:keyof HTMLElementTagNameMap|string, {classList,

https://wwoss.ru/lib/exe/detail.php?id=software%3Adevelopment%3Aweb%3Adocs%3Awriting_our_own_wysiwyg_editor&media=software:development:web:docs:writing_our_own_wysiwyg_editor_05.png

Last
update:
2025/07/20
09:18

software:development:web:docs:writing_our_own_wysiwyg_editor https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

https://wwoss.ru/ Printed on 2026/02/11 13:58

styles, props, attrs, options, append}:{
 classList?: string[],
 styles?: object,
 props?: object,
 attrs?: object,
 options?: {
 is?:string
 },
 append?: Element[]
} = {}):any => {
 if(!tagName) {
 throw new Error(`Undefined tag ${tagName}`);
 }
 const element = document.createElement(tagName, options);
 // element.classList
 if(classList) {
 for (let i = 0; i < classList.length; i++) {
 const styleClass = classList[i];
 if(styleClass) {
 element.classList.add(styleClass)
 }
 }
 }
 // element.style[prop]
 if(styles) {
 const stylesKeys = Object.keys(styles);
 for (let i = 0; i < stylesKeys.length; i++) {
 const key = stylesKeys[i];
 element.style[key] = styles[key];
 }
 }
 // element[prop]
 if(props) {
 const propKeys = Object.keys(props);
 for (let i = 0; i <; propKeys.length; i++) {
 const key = propKeys[i];
 element[key] = props[key];
 }
 }
 // element.setAttribute(key,val)
 if(attrs) {
 const attrsKeys = Object.keys(attrs);
 for (let i = 0; i < attrsKeys.length; i++) {
 const key = attrsKeys[i];
 if(attrs[key]) {
 element.setAttribute(key, attrs[key]);
 }
 }
 }
 if(append) {

2026/02/11 13:58 3/12 Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1

worldwide open-source software - https://wwoss.ru/

 for (let i = 0; i < append.length; i++) {
 const appendEl = append[i];
 element.append(appendEl);
 }
 }
 return element;
};

Функция сама по себе проста насколько это возможно и от себя ничего не добавляет, создана
исключительно для удобства, вы можете найти похожие функции в Vue по имени h или в React
увидите похожий синтаксис в документации раздела Elements. Данная функция родилась в
процессе написания этого компонента из‑за острой необходимости быстро и просто и удобно
что‑то делать с элементами DOM дерева, я не копировал и не переделывал функции из
фреймворков, так сказать вдохновился на опыте использования.

Также в базе у нас будет 2 файла со стилями в одном файле будут стили для самого
редактора, а во втором файле будут базовые стили для тегов. Сами стили написаны с
использованием SASS, но в репозитории также доступна и CSS версия, все цвета прописаны
через переменные, цветовая палитра взята отсюда.

Базовые функции редактора

Редактор в качестве основы будет поддерживать семантику HTML5 доступных нам тегов, а это
значит что, бы стоило начать с тегов. Что мы знаем о HTML5 тегах в общих чертах?

Теги могут быть одиночные и с закрывающим тегом <hr> или строка
Фундаментально поведение тега в верстке определяется его position и display CSS
свойствами
Теги имеющие закрывающий тег не обязательно имеют текстовый контент внутри,
например: figure, audio, video
Часть тегов изначально визуально выглядит одинаково var,b, strong или вообще никак не
выделяется на фоне текста span. abbr, dfn
Часть тегов теряет смысл и семантику без своих обязательных атрибутов a, abbr, dfn,
time

Из этих знаний мы можем вывести условно, что у нас существуют блочные и строчные
элементы с которыми мы хотим иметь 3 базовых действия в редакторе:

Вставлять тег и убирать его удалив или убрав форматирование у текста.
Оборачивать существующий текст в тег, по аналогии, как мы привыкли это видеть в
текстовых редакторах.
Управлять не только текстом и тегом, но и атрибутами (иногда properties) тега, чтобы
получить больший контроль над редактируемым текстом.

В базе, на мой взгляд, это все, что должен уметь текстовый редактор. Дополнительные
функции типа: раскрашивания элементов в любые цвета, установку колонтитулов для страниц
и вообще работа с текстом постранично, а также работа с таблицами, графиками, различные
drag and drop элементы — все это не относится к идее текстового HTML5 WYSIWYG редактора,
или относится косвенно в виде дополнительных возможностей, мы же начнем с азов и
редактирования текста и постараемся вообще не вмешиваться в редактируемый DOM

https://wwoss.ru/doku.php?id=html_color_table

Last
update:
2025/07/20
09:18

software:development:web:docs:writing_our_own_wysiwyg_editor https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

https://wwoss.ru/ Printed on 2026/02/11 13:58

контента, чтобы не портить пользовательский UX и дать работать с чистым HTML, что
например уже нельзя в навороченном новом редакторе хабра и текст мне для статьи пришлось
переносить поблочно из уже частично готово HTML5

Реализуем вставку тегов

const allTags = [
 { tag: 'h1' },
 { tag: 'h2' },
 { tag: 'h3' },
 { tag: 'h4' },
 { tag: 'h5' },
 { tag: 'h6' },
 { tag: 'span' },
 { tag: 'mark' },
 { tag: 'small' },
 { tag: 'dfn' },
 { tag: 'a'},
 { tag: 'q'},
 { tag: 'b'},
 { tag: 'i'},
 { tag: 'u'},
 { tag: 's'},
 { tag: 'sup'},
 { tag: 'sub'},
 { tag: 'kbd'},
 { tag: 'abbr'},
 { tag: 'strong'},
 { tag: 'code'},
 { tag: 'samp'},
 { tag: 'del'},
 { tag: 'ins'},
 { tag: 'var'},
 { tag: 'ul'},
 { tag: 'ol'},
 { tag: 'hr'},
 { tag: 'pre'},
 { tag: 'time'},
 { tag: 'img'},

https://wwoss.ru/lib/exe/detail.php?id=software%3Adevelopment%3Aweb%3Adocs%3Awriting_our_own_wysiwyg_editor&media=software:development:web:docs:writing_our_own_wysiwyg_editor_06.png

2026/02/11 13:58 5/12 Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1

worldwide open-source software - https://wwoss.ru/

 { tag: 'audio'},
 { tag: 'video'},
 { tag: 'blockquote'},
 { tag: 'details'},
] as WCWYSIWYGTag[];

Если вам, как и мне хочется этот листинг превратить в простой массив, то обратите внимание
на тип WCWYSIWYGTag в котором я заложил еще hint, is, method которые пригодятся позже
чтобы реализовать в веб‑компоненте поддержку других веб‑компонентов)

Внимательный читатель, может заметить, что тут не хватает нескольких тегов, например
iframe, object, script, ruby, отсутствует самый популярный тег div и с ним section, main,
footer и еще несколько, в целом ничего не мешает их добавить в тот список, но эти теги не
являются частью текстового редактора, если размышлять семантически, в редакторе мы
редактируем некий article в котором семантически может быть footer, header, aside, но с
точки зрения текста они роли не сыграют. Возможно в будущих версиях 1+ этого
веб‑компонента я добавлю какие‑то стили и поддержку этих тегов в виде кнопок, а пока их
можно разместить только переключившись в текстовый режим редактора.

Разобравшись со всеми тегами осталось дать пользователю выбирать их через атрибут
data‑allow‑tags и на основе переданного списка атрибутов строить интерфейс:

//Получаем теги из аттрибута если есть
const allowTags = this.getAttribute('data-allow-tags') || allTags.map(t =>
t.tag).join(',');
//...
//Собираем теги в массив
this.EditorAllowTags = allowTags.split(',');
//Формируем итоговый WCWYSIWYGTag[]
this.EditorTags = allTags.filter(tag => allowTags.includes(tag.tag));

И осталось описать функцию, которая соберет нам кнопки, тк собирать кнопки нам придется
еще не 1 раз, сделаем два аргумента для фунцкции, 1 элемент в который собираем кнопки и 2
набор кнопок (тегов), благодаря функции el код выглядит очень просто:

#makeActionButtons(toEl:HTMLElement, actions:WCWYSIWYGTag[]) {
 for (let i = 0; i < actions.length; i++) {
 const action = actions[i];
 const button = el('button', {
 classList: ['wc-wysiwyg_btn', `-${action.tag}`],
 props: {
 tabIndex: -1,
 type:'button',
 textContent: action.is ? `${action.tag} is=${action.is}` :
action.tag,
 onpointerup: (event) =>; this.#tag(action.tag, event,
action.is),
 },
 attrs: {
 'data-hint': action.hint ? action.hint : this.#t(action.tag)
|| '-',

Last
update:
2025/07/20
09:18

software:development:web:docs:writing_our_own_wysiwyg_editor https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

https://wwoss.ru/ Printed on 2026/02/11 13:58

 }
 });
 toEl.appendChild(button);
 }
}

Функция достаточно проста, в цикле создаем кнопки и привязываем с помощью стрелочных
функций и onpointerup действия к ним. Абстрактно, мы всегда будем вызывать действие
#tag а уже внутри этого метода разбираться, что будем делать с этим тегом. Рассмотрим
функцию #tag

#tag = (tag:WCWYSIWYGTag) => {
 switch (tag.tag) {
 case 'audio':
 this.#Media('audio');
 break;
 case 'video':
 this.#Media('video');
 break;
 case 'details':
 this.#Details();
 case 'img':
 this.#Image();
 break;
 default:
 if(typeof tag.method === 'function') {
 tag.method.apply(this, tag);
 } else {
 this.#wrapTag(tag, tag.is);
 }
 break;
 }
}

Тоже все очень просто, мы перебираем доступные варианты действия над тегом, мы можем
его или обернуть с поправкой на тег или вставить тег самостоятельно с поправкой на
особенности тега (или custom‑element), на весь набор тегов выходит 4 метода для
Audio\Video, img и details, в остальном мы можем просто создать тег и обернуть текст в него
или если доступен собственный метод у тега, выполнить его. Рассмотрим обработку блочного
элемента на примере Audio/Video.

#Media = (tagName:string) => {
 const mediaSrc = prompt('src', '');
 if(mediaSrc === '') {
 return false;
 }
 const mediaEl = el(tagName, { attrs: { controls: true }, props: { src:
mediaSrc } });
 this.EditorNode.append(mediaEl);

2026/02/11 13:58 7/12 Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1

worldwide open-source software - https://wwoss.ru/

 this.updateContent();
}

Т.к. минимализм наше все, в место модальных окон я буду использовать prompt чтобы не
раздувать редактор очередным изобретением модального окна с одним полем ввода, хотя с el
функцией это выглядело бы не так сложно.

А вот с методом #wrapTag все немного сложнее, но концептуально он похож на метод #Media,
с нескольими исключениями:

#wrapTag = (tag, is:boolean|string = false) => {
 //Обработаем случай, когда оборачивают в список, то текст будет в li а сверху добавим
ol/ul
 const listTag = ['ul', 'ol'].includes(tag) ? tag : false;
 tag = listTag !== false ? 'li' : tag;
 const Selection = window.getSelection();
 let className = null;
 //подготовим параметры по умолчанию для создания el
 let defaultOptions = {
 classList: className ? className : undefined,
 } as any;
 if(is) {
 defaultOptions.options = {is};
 }
 let tagNode = el(tag, defaultOptions);

 if (Selection !== null && Selection.rangeCount) {
 if(listTag !== false) {
 const list = el(listTag);
 tagNode.replaceWith(list);
 list.append(tagNode)
 }
 const range = Selection.getRangeAt(0).cloneRange();
 range.surroundContents(tagNode);
 Selection.removeAllRanges();
 Selection.addRange(range);
 //Если выделенного текста на странице нет, добавим имя тега
 //чтобы пользователь не мучался с поданием урсором в пустой тег
 if(Selection.toString().length === 0) {
 tagNode.innerText = tag;
 }
 this.updateContent();
 }
}

Чтобы не добавлять отдельный метод для списков и поддерживать возможность обернуть тест
в список и получить список из элемента который был выделен в тексте, обработаем это
исключение прямо в этом методе.

Многие пользователи сначала нажимают на тег, а потом собираются туда что‑то писать, но
попасть курсором в пустой тег затруднительно по этому мы обработаем случай

Last
update:
2025/07/20
09:18

software:development:web:docs:writing_our_own_wysiwyg_editor https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

https://wwoss.ru/ Printed on 2026/02/11 13:58

Selection.toString().length === 0 и если текст не был выделен, добавим в новый тег
имя этого тега, чтобы было проще потом отредактировать содержимое тега.

Оборачивать в текст можно не только в простой тег, но и в custom‑element так что добавим и
поддержку is для автономных веб‑компонентов, а для custom‑elements просто обернем текст
в этот тег, под оборачиванием в текст я имею в виду конструкцию
range.surroundContents(tagNode);

Отлично! на этом этапе, мы уже имеем базовый функционал и можем вставлять теги в наш
EditorNode и оборачивать в теги существующий текст, давайте сразу проработаем кнопку
отмены вставки, тот случай, когда мы хотим снять с части текста обрамление каким‑то тегом.
Создадим наш ClearFormatButton

this.EditorClearFormatBtn = el('button', {
 classList: ['wc-wysiwyg_btn', '-clear'],
 attrs: {
 'data-hint': this.#t('clearFormat'),
 },
 props: {
 innerHTML:'Ⱦ',
 },
});

По умолчанию кнопка очистки формата не имеет собственного слушателя событий, ее работа
будет зависеть от текущего выделенного тега в редакторе, добавим в нашу область
редактирования EditorNode слушатель onpointerup, обработку события очистки формата, а
также проверку возможности редактировать по выбранному элементу, в целом весь
NodeEditor редактора в базовой версии будет выглядеть так:

//.... в connectedCallback()
this.EditorNode = el('article', {
 classList: ['wc-wysiwyg_content', this.getAttribute('data-content-
class') || ''],
 props: {
 contentEditable: true,
 //Поведение при клике в области редактирования
 onpointerup: event => {
 this.checkCanClearElement(event);
 if(this.#EditProps) {
 this.checkEditProps(event);
 }
 },
 //Обновляем контент по input событию
 oninput: event => {
 this.updateContent();
 if(this.#Autocomplete) {
 this.#checkAutoComplete();
 }
 },
 //Проверяем сочетания клавиш нажатых в редакторе

2026/02/11 13:58 9/12 Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1

worldwide open-source software - https://wwoss.ru/

 onkeydown: event => {
 this.#checkKeyBindings(event)
 }
 },
});

Вернемся к нашей функции форматирования текста, мое повествование идет в порядке
наращивания функционала, по этому мы рассматриваем код не в той очередности, в которой
вы его видите в git репозитории.

#checkCanClearElement(event:Event) {
 const eventTarget = event.target as HTMLElement;
 if(eventTarget !== this.EditorNode) {
 if(eventTarget.nodeName !== 'P'
 && eventTarget.nodeName !== 'SPAN') {
 this.EditorClearFormatBtn.style.display = 'inline-block';
 this.EditorClearFormatBtn.innerHTML = `Ⱦ
${eventTarget.nodeName}`,
 this.EditorClearFormatBtn.onpointerup = (event) => {
eventTarget.replaceWith(document.createTextNode(eventTarget.textContent));
 }
 this.showEditorInlineDialog();
 } else {
 this.EditorClearFormatBtn.style.display = 'none';
 this.EditorClearFormatBtn.onpointerup = null;
 }
 }
}

В момент нажатия на элемент, мы проверяем что нажатие произошло не в P или SPAN это
единственные два тега, которые мы не будем очищать, для остальных мы в кнопку очистки
формата подставим текущий тег и добавим уже здесь слушатель события нажатия, сама
очистка тега выглядит очень просто, мы меняем тег на textNode и получаем просто текст
document.createTextNode(eventTarget.textContent). Из минусов такого решения можно
выделить, что очистка формата происходит только над 1 тегом и пользователь не может
очистить формат сразу нескольких тегов в глубину (parentElements). На этом этапе мы
получили CRUD действия над тегами, их можно вставлять\оборачивать в тег и можно удалять,
осталось проработать U — Update а именно, редактирование свойств тегов, ведь некоторые
теги без атрибутов не имеют семантического смысла и ли теряют функциональность.

Редактирование атрибутов тегов

О том, в какой момент мы проверяем нажатие на тег мы уже проговорили, в этот же момент
мы также проверяем можем ли мы редактировать атрибуты у тега. Для начала пробросим JSON
строку вида {a: [«href», «class», «target»]} которая содержит объект, где ключом
является имя тега, а значением массив строк в виде имен атрибутов, которые мы допускаем к
редактированию в редакторе.

#checkEditProps(event) {

Last
update:
2025/07/20
09:18

software:development:web:docs:writing_our_own_wysiwyg_editor https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

https://wwoss.ru/ Printed on 2026/02/11 13:58

 const eventTarget = event.target as HTMLElement;

 //Проверяем eventTarget доступен ли такой тег для редактирования
 if(this.#EditProps[eventTarget.nodeName]) {
 const props = this.#EditProps[eventTarget.nodeName];
 event.stopPropagation();
 //Показываем форму редактирования пропсов и наш инлайн диалог
 this.EditorPropertyForm.style.display = '';
 this.showEditorInlineDialog();
 //создаем в цикле набор инпутов каждый из которых биндим на свой аттрибут, не
забываем очистить форму перед этим
 this.EditorPropertyForm.setAttribute('data-tag',
eventTarget.nodeName);
 this.EditorPropertyForm.innerHTML = '';
 for (let i = 0; i < props.length; i++) {
 const tagProp = props[i];
 const isAttr = tagProp.indexOf('data-') > -1 || tagProp ===
'class';
 this.EditorPropertyForm.append(el('label', {
 props: { innerText: `${tagProp}=` },
 append: [
 //Сразу же добавим инпут с редактированием свойств
 el('input', {
 attrs: { placeholder: tagProp },
 classList: ['wc-wysiwyg_inp'],
 props: {
 value: isAttr ?
eventTarget.getAttribute(tagProp) : eventTarget[tagProp] || '',
 oninput: (eventInput) > {
 const eventInputTarget = eventInput.target
as HTMLInputElement;
 //Чтобы пользователь мог вводить несколько классов одной строкой, будем
подставлять класс через className
 if(tagProp === 'class') {
 eventTarget.className =
eventInputTarget.value;
 }
 //Тут же обработаем исключение для datetime
 if((isAttr || tagProp === 'datetime') &&
eventInputTarget !== null) {
 eventTarget.setAttribute(tagProp,
eventInputTarget.value)
 } else {
 eventTarget[tagProp] =
eventInputTarget.value;
 }
 this.updateContent();
 }
 }
 })

2026/02/11 13:58 11/12 Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1

worldwide open-source software - https://wwoss.ru/

]
 }));
 }
 //Добавляем кнопку отправки нашей формы для поддержания привычного UX
 this.EditorPropertyForm.append(el('button', {
 classList: ['wc-wysiwyg_btn'],
 props: {
 type: 'submit',
 innerHTML: '&#8627;',
 },
 }));
 }
}

Не спешите пролистывать код, только в статье я оставляю русские комментарии к коду, на
github все на английском и комментариев меньше. К этому моменту мы получили полноценный
MVP, осталось разрешить всем элементам редактировать class и можно дальше просто
обвешать текст классами из вашего CSS и будет вам счастье:) шучу конечно, больше фишек и
возможностей на текущий момент читайте в Readme.md

Это была первая часть публикации, во второй части я рассмотрю реализацию фишек и удобств
для редактора, чтобы сделать его по настоящему функциональным, удобным и легковесным
веб‑компонентом, расскажу про фидбек от сообществ из телеграм каналов, упомяну опыт
интеграции в настоящие сайты большие и маленькие и даже в гости к $mol узнать как дела у
них с веб‑компонентами я заглянул, т.к. там тоже про opensource вродебы;)

Заключение

Хочу в конце статьи еще раз напомнить, что версия компонента 0.9.33 что как бы намекает,
что для версии 1 еще сыроват компонент, но практическое применение и первых
пользователей, а также пару сотен установок в npm и пару звезд на гитхабе он уже нашел, что
дает мне силы и мотивацию продолжать развивать это дело на некоммерческой основе.
Никаких донатов как некоторые опенсус разработчики под обещания я не собираю и не буду,
просто так на чай тоже не нужно, у меня есть любимые галеры с комфортной з.п. а это просто
часть развития кругозора)

P. S. все что буду находить и считать полезным и нужным я буду складывать вот тут, не
стесняйтесь предлагать свои ссылки в цикл для расширения кругозора и обмена опытом

p.p.s как и обещал попытка вставить HTML5 простые теги в хабр статью — Демонстрация и
обзор возможностей веб‑компонента wc‑wysiwyg — сравните с демкой) за раз всего не
рассказать, постараюсь ответить на все вопросы в комментариях) have fun!

Многие пользователи сначала нажимают на тег, а потом собираются туда что-то писать,
но попасть курсором в пустой тег затруднительно по этому мы обработаем случай
Selection.toString().length === 0 и если текст не был выделен, добавим в новый
тег имя этого тега, чтобы было проще потом отредактировать содержимое тега
Оборачивать в текст можно не только в простой тег, но и в custom-element так что
добавим и поддержку is для автономных веб-компонентов, а для custom-elements
просто обернем текст в этот тег, под оборачиванием в текст я имею в виду конструкцию

Last
update:
2025/07/20
09:18

software:development:web:docs:writing_our_own_wysiwyg_editor https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

https://wwoss.ru/ Printed on 2026/02/11 13:58

range.surroundContents(tagNode);

Дополнения и Файлы

Ссылка на оригинальную статью
wc-wysiwyg

From:
https://wwoss.ru/ - worldwide open-source software

Permanent link:
https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

Last update: 2025/07/20 09:18

https://habr.com/ru/articles/716986/
https://git.wwoss.ru/VladPolskiy/wc-wysiwyg.git
https://git.wwoss.ru/
https://wwoss.ru/
https://wwoss.ru/doku.php?id=software:development:web:docs:writing_our_own_wysiwyg_editor

	Пишем собственный WYSIWYG редактор на основе веб-компонентов и textarea. Часть 1
	Вступление
	Техническая основа и база редактора
	Базовые функции редактора
	Реализуем вставку тегов
	Редактирование атрибутов тегов
	Заключение
	Дополнения и Файлы

