Часть II. Подготовка к сборке

2. Подготовка хост-системы

Содержание

- 2.1. Введение
- 2.2. Требования к хост-системе
- 2.3. Этапы сборки системы LFS
- 2.4. Создание нового раздела
- 2.5. Создание файловой системы на разделе
- 2.6. Установка переменной \$LFS
- 2.7. Монтирование нового раздела

2.1. Введение

В этой главе проверяются и при необходимости устанавливаются основные инструменты, необходимые для построения LFS. Затем подготавливается раздел, в котором будет размещаться система LFS. Мы создадим сам раздел, создадим на нем файловую систему и смонтируем его.

2.2. Требования к хост-системе

2.2.1. Аппаратное обеспечение

Редакторы LFS рекомендуют, чтобы процессор имел не менее четырех ядер и не менее 8 ГБ памяти. Старые системы, не отвечающие этим требованиям, будут по-прежнему работать, но время сборки пакетов будет значительно больше, чем указано в документации.

2.2.2. Программное обеспечение

Ваша хост-система должна иметь следующее программное обеспечение с указанными минимальными версиями. Это не должно быть проблемой для большинства современных дистрибутивов Linux. Также обратите внимание на то, что многие дистрибутивы помещают заголовочные файлы в отдельные пакеты, как правило в формате <package-name>-devel или <package-name>-dev. Обязательно установите эти пакеты, если ваш дистрибутив их предоставляет.

Более ранние версии перечисленных ниже пакетов могут работать, но это не проверялось.

- Bash-3.2 (/bin/sh должен быть символической или жесткой ссылкой на bash)
- Binutils-2.13.1 (Версия выше 2.42 не рекомендуется, так как она не тестировалась)
- Bison-2.7 (/usr/bin/yacc должен быть ссылкой на bison или небольшой скрипт,

запускающий bison)

- Coreutils-8.1
- Diffutils-2.8.1
- Findutils-4.2.31
- Gawk-4.0.1 (/usr/bin/awk должен быть ссылкой на gawk)
- GCC-5.2, включая компилятор C++, g++ (версии выше 13.2.0 не рекомендуются, поскольку они не тестировались). Также должны присутствовать стандартные библиотеки C и C++ (с заголовочными файлами), чтобы компилятор C++ мог осуществлять сборку программ.
- Grep-2.5.1a
- Gzip-1.3.12
- Linux Kernel-4.19

Причиной, по которой указаны минимальные требования к версии ядра, является то, что мы указываем эту версию при сборке glibc в Глава 5 и Глава 8. Так как более старые ядра не поддерживаются, скомпилированный пакет glibc немного меньше и быстрее. По состоянию на февраль 2024 г. 4.19 является самой старой версией ядра, поддерживаемой разработчиками ядра. Некоторые версии ядра, более старые, чем 4.19, могут по-прежнему поддерживаться сторонними командами, но они не считаются официальными выпусками ядра; подробности читайте на странице https://kernel.org/category/releases.html

Если версия ядра хоста более ранняя, чем 4.19, вам необходимо обновить ядро на более современную версию. Есть два способа сделать это. Во-первых, посмотрите, предоставляет ли ваш дистрибутив Linux пакет ядра 4.19 или более позднюю версию. Если это так, установите его. Если ваш дистрибутив не предлагает приемлемый пакет ядра или вы предпочитаете не устанавливать его, вы можете скомпилировать ядро самостоятельно. Инструкции по компиляции ядра и настройке загрузчика (при условии, что хост использует GRUB) находятся в Глава 10.

Для сборки LFS необходимо, чтобы ядро хоста поддерживало псевдотерминал UNIX 98 (РТҮ). Обычно он включен на всех настольных или серверных дистрибутивах, поставляющих Linux 4.19 или более новое ядро. Если на хосте вы используете самостоятельно собранное ядро, убедитесь, что для параметра CONFIG_UNIX98_PTYS установлено значение у в конфигурационном файле ядра.

- M4-1.4.10
- Make-4.0
- Patch-2.5.4
- Perl-5.8.8
- Python-3.4
- Sed-4.1.5
- Tar-1.22
- Texinfo-5.0
- Xz-5.0.0

Важно: Обратите внимание, что упомянутые выше символические ссылки необходимы для создания системы LFS с использованием инструкций, содержащихся в этой книге. Симлинки, указывающие на другое программное обеспечение (например, dash, mawk и т. д.), могут работать, но не тестируются и не поддерживаются командой разработчиков LFS, и могут потребовать либо

отклонения от инструкций, либо дополнительных исправлений для некоторых пакетов.

Чтобы узнать, есть ли в вашей хост-системе все необходимые пакеты и возможность компилировать программы, выполните следующий скрипт:

```
cat > version-check.sh << "EOF"
#!/bin/bash
# A script to list version numbers of critical development tools
# If you have tools installed in other directories, adjust PATH here AND
# in ~lfs/.bashrc (section 4.4) as well.
LC ALL=C
PATH=/usr/bin:/bin
bail() { echo "FATAL: $1"; exit 1; }
grep --version > /dev/null 2> /dev/null || bail "grep does not work"
sed '' /dev/null || bail "sed does not work"
       /dev/null || bail "sort does not work"
ver_check()
   if ! type -p $2 &>/dev/null
     echo "ERROR: Cannot find $2 ($1)"; return 1;
   fi
   v=\$(\$2 --version 2>\&1 | grep -E -o '[0-9]+\.[0-9\.]+[a-z]*' | head -n1)
   if printf '%s\n' $3 $v | sort --version-sort --check &>/dev/null
     printf "OK:
                    -9s -6s >= $3\n" "$1" "$v"; return 0;
   else
     printf "ERROR: %-9s is TOO OLD ($3 or later required)\n" "$1";
     return 1;
   fi
}
ver kernel()
   kver=\$(uname -r \mid grep -E -o '^[0-9\.]+')
   if printf '%s\n' $1 $kver | sort --version-sort --check &>/dev/null
   then
     printf "OK:
                    Linux Kernel $kver >= $1\n"; return 0;
   else
     printf "ERROR: Linux Kernel ($kver) is TOO OLD ($1 or later
required)\n" "$kver";
     return 1;
   fi
}
```

```
# Coreutils first because --version-sort needs Coreutils >= 7.0
                                   8.1 || bail "Coreutils too old, stop"
ver check Coreutils
                         sort
ver check Bash
                                   3.2
                          bash
                         ld
                                   2.13.1
ver check Binutils
ver check Bison
                                   2.7
                          bison
ver check Diffutils
                         diff
                                   2.8.1
ver check Findutils
                          find
                                   4.2.31
ver_check Gawk
                                   4.0.1
                         gawk
ver check GCC
                                   5.2
                         qcc
ver check "GCC (C++)"
                         g++
                                   5.2
ver check Grep
                         grep
                                   2.5.1a
ver check Gzip
                         gzip
                                   1.3.12
ver check M4
                                   1.4.10
                         m4
ver check Make
                         make
                                   4.0
ver_check Patch
                                   2.5.4
                          patch
ver check Perl
                         perl
                                   5.8.8
ver check Python
                         python3
                                   3.4
ver check Sed
                                   4.1.5
                         sed
ver check Tar
                         tar
                                   1.22
ver check Texinfo
                         texi2any 5.0
ver check Xz
                         ΧZ
                                   5.0.0
ver kernel 4.19
if mount | grep -q 'devpts on /dev/pts' && [ -e /dev/ptmx ]
then echo "OK:
                  Linux Kernel supports UNIX 98 PTY";
else echo "ERROR: Linux Kernel does NOT support UNIX 98 PTY"; fi
alias check() {
   if $1 --version 2>&1 | grep -qi $2
   then printf "OK: %-4s is $2\n" "$1";
   else printf "ERROR: %-4s is NOT $2\n" "$1"; fi
}
echo "Aliases:"
alias check awk GNU
alias check yacc Bison
alias check sh Bash
echo "Compiler check:"
if printf "int main(){}" | g++ -x c++ -
then echo "OK:
                  g++ works";
else echo "ERROR: q++ does NOT work"; fi
rm -f a.out
if [ "$(nproc)" = "" ]; then
   echo "ERROR: nproc is not available or it produces empty output"
else
   echo "OK: nproc reports $(nproc) logical cores are available"
fi
E0F
```

bash version-check.sh

2.3. Этапы сборки системы LFS

LFS разработан для сборки за один сеанс. То есть инструкция предполагает, что система не будет выключаться в процессе. Это не означает, что система должна быть собрана за один присест. Для возобновления сборки в точке предыдущей остановки (после перезагрузки/выключения), необходимо выполнить некоторые процедуры повторно.

2.3.1. Главы 1-4

Эти главы выполняются на хост-системе. После перезагрузки обратите внимание на следующее:

При выполнении операций, от имени пользователя root после Раздела 2.4, ДЛЯ ПОЛЬЗОВАТЕЛЯ root должна быть установлена переменная окружения LFS.

2.3.2. Главы 5-6

Раздел /mnt/lfs должен быть смонтирован.

Эти две главы должны быть выполнены из-под пользователя lfs. Перед выполнением любой задачи в этих главах необходимо выполнить команду su - lfs. В противном случае вы рискуете установить пакеты на хост и сделать его непригодным для использования.

Выполнение процедур из Общие инструкции по компиляции имеет решающее значение. Если есть какие-либо сомнения по поводу установки пакета, убедитесь, что все ранее распакованные tar-архивы удалены, затем повторно извлеките файлы и выполните все инструкции, приведенные в этом разделе.

2.3.3. Главы 7-10

Раздел /mnt/lfs должен быть смонтирован.

Некоторые операции, такие как «Смена владельца» или «Вход в среду Chroot», должны быть выполнены от имени пользователя root с переменной окружения \$LFS, установленной для пользователя root.

При входе в chroot переменная среды LFS должна быть установлена для пользователя root. Переменная LFS не используется после входа в среду chroot.

Виртуальные файловые системы должны быть смонтированы. Это можно сделать до или после входа в chroot, переключившись на виртуальный терминал хоста и от имени пользователя root выполнив команды, описанные в Раздел 7.3.1, «Монтирование и заполнение /dev» и Раздел 7.3.2, «Монтирование виртуальных файловых систем ядра».

2.4. Создание нового раздела

Как и большинство других операционных систем, LFS обычно устанавливается на выделенный раздел. Рекомендуемый подход к построению системы LFS состоит в том, чтобы использовать доступный пустой раздел или, если у вас достаточно неразмеченного пространства, использовать его

Минимальная система требует раздел размером около 10 гигабайт (ГБ). Этого достаточно для хранения всех архивов с исходным кодом и компиляции пакетов. Однако, если система LFS предназначена для использования в качестве основной системы Linux, вероятно, будет установлено дополнительное программное обеспечение, для которого потребуется дополнительное пространство. Раздел размером 30 ГБ является разумным размером для расширения. Сама система LFS не займет столько места. Большая часть этого требования заключается в предоставлении достаточного временного хранилища, а также в добавлении дополнительных возможностей после сборки LFS. Кроме того, для компиляции пакетов может потребоваться много места на диске, которое будет освобождено после установки пакета.

Поскольку для компиляции не всегда достаточно оперативной памяти (ОЗУ), рекомендуется использовать небольшой раздел диска в качестве раздела подкачки. Он используется ядром для хранения редко используемых данных и оставляет больше памяти для активных процессов. Раздел подкачки для системы LFS может совпадать с разделом, используемым хостсистемой, и в этом случае нет необходимости создавать еще один.

Запустите программу создания разделов диска, такую как cfdisk или fdisk, с параметром командной строки, указав имя жесткого диска, на котором будет создан новый раздел, например, /dev/sda для основного диска. Создайте раздел Linux и раздел подкачки, если это необходимо. Пожалуйста, обратитесь к справке cfdisk(8) или fdisk(8), если вы еще не знаете, как пользоваться этими программами.

Примечание: Для опытных пользователей возможны и другие схемы разбиения. Система LFS может располагаться на программном RAID-массиве или логическом томе LVM. Однако для некоторых опций требуется initramfs, что является сложной темой. Эти методы разбиения не рекомендуются начинающим пользователям LFS.

Запомните обозначение созданного раздела (например, sda5). В этой книге он будет называться разделом LFS. Также запомните обозначение раздела подкачки. Эти имена понадобятся позже для файла /etc/fstab.

2.4.1. Другие вопросы по созданию разделов

Рекомендации по созданию разделов системы часто публикуются в списках рассылки LFS. Это очень субъективная тема. По умолчанию для большинства дистрибутивов используется весь диск, за исключением небольшого раздела подкачки. Это не оптимально для LFS по нескольким причинам. Это снижает гибкость, затрудняет совместное использование данных между несколькими дистрибутивами или сборками LFS, делает резервное копирование более трудоемким и может тратить дисковое пространство из-за неэффективно распределенной

файловой системы.

2.4.1.1. Корневой раздел

Корневой раздел LFS (не путать с каталогом /root) размером в 20 гигабайт является хорошим компромиссом для большинства систем. Он обеспечивает достаточно места для построения LFS и большей части BLFS, но достаточно мал, чтобы можно было легко создать несколько разделов для экспериментов.

2.4.1.2. Раздел подкачки

Большинство дистрибутивов автоматически создают раздел подкачки. Обычно рекомендуемый размер раздела подкачки примерно в два раза превышает объем физической памяти, однако это требуется редко. Если дисковое пространство ограничено, установите размер раздела подкачки в два гигабайта и контролируйте его объемом.

Если вы хотите использовать режим гибернации (suspend-to-disk) Linux, которая записывает содержимое ОЗУ в раздел подкачки перед выключением машины. Установите размер раздела подкачки не меньше объема установленной оперативной памяти.

Использование файла подкачки - это не очень хорошо. Для механических жестких дисков вы можете определить, что система использует раздел подкачки, просто слыша активность диска и наблюдая, как система реагирует на команды. Для SSD-накопителя вы не сможете услышать, что используется раздел подкачки, но сможете оценить, сколько места на разделе подкачки занято, используя команды top или free. По возможности следует избегать использования SSD-накопителя для раздела подкачки. Первой реакцией на активность раздела подкачки должна быть проверка на необоснованное применение какой-либо команды, например, попытка редактирования пятигигабайтного файла. Если использование раздела подкачки становится обычным явлением, лучшее решение — приобретение большего объема оперативной памяти для вашей системы.

2.4.1.3. Раздел GRUB

Если загрузочный диск размечен с помощью таблицы разделов GUID (GPT), необходимо создать небольшой раздел, обычно размером 1 МБ, если он еще не существует. Этот раздел не форматируется, но должен быть доступен для использования GRUB во время установки загрузчика. Обычно он помечен как 'BIOS Boot' при использовании fdisk или имеет код EF02 при использовании gdisk.

[Примечание] Примечание Раздел Grub Bios должен находиться на диске, который BIOS использует для загрузки системы. Это не обязательно тот же диск, на котором расположен корневой раздел LFS. Диски в системе могут использовать разные типы таблиц разделов. Наличие раздела Grub Bios зависит только от типа таблицы разделов на загрузочном диске.

2.4.1.4. Разделы, используемые для удобства

Есть несколько других разделов, которые не являются обязательными, но их следует учитывать при разработке схемы диска. Следующий список не является исчерпывающим, а представлен в качестве справочного руководства.

- /boot Настоятельно рекомендуется. Используйте этот раздел для хранения ядер и другой загрузочной информации. Чтобы свести к минимуму возможные проблемы с загрузкой дисков большого размера, сделайте этот раздел первым физическим разделом на первом диске. Размер раздела в 200 мегабайт вполне достаточен.
- /boot/efi Системный раздел EFI, используемый для загрузки системы с помощью UEFI. Подробнее читайте на странице BLFS.
- /home Настоятельно рекомендуется. Предоставьте общий доступ к своему домашнему каталогу и пользовательским настройкам нескольким дистрибутивам или сборкам LFS. Размер, как правило, довольно большой и зависит от доступного места на диске.
- /usr в LFS, /bin, /lib, и /sbin являются символическими ссылками на их аналоги в /usr. Таким образом /usr содержит все двоичные файлы, необходимые для работы системы. Для LFS отдельный раздел /usr не требуется. Если он вам необходим, вы должны сделать раздел достаточно большим, чтобы поместить туда все программы и библиотеки в системе. В этой конфигурации, корневой раздел может быть очень маленьким (возможно, всего один гигабайт), поэтому он подходит для тонкого клиента или бездисковой рабочей станции (где /usr монтируется с удаленного сервера). Однако вы должны знать, что для загрузки системы с отдельного раздела /usr потребуется initramfs (не включенный в LFS).
- /opt Этот каталог наиболее полезен для BLFS, в него можно установить некоторые большие пакеты, такие как KDE или Texlive, без использования иерархии /usr. Для /opt достаточно размера от 5 до 10 гигабайт.
- /tmp По умолчанию, systemd монтирует здесь tmpfs. Если вы хотите переопределить это поведение, следуйте инструкции Раздел 9.10.3, «Отключение tmpfs для /tmp» при настройке системы LFS.
- /usr/src Этот раздел очень удобен для хранения исходников BLFS и совместного использования их в сборках LFS. Его также можно использовать в качестве места для сборки пакетов BLFS. Размера в 30-50 гигабайт вполне достаточно.

Любой отдельный раздел, который вы хотите автоматически монтировать при загрузке, должен быть указан в файле /etc/fstab. Подробности о том, как указать разделы, будут обсуждаться в Раздел 10.2, «Создание файла /etc/fstab».

2.5. Создание файловой системы на разделе

Раздел - это всего лишь диапазон секторов на диске, указанный в таблице разделов. Прежде чем операционная система сможет использовать раздел для хранения каких-либо файлов, он должен быть отформатирован, чтобы содержать файловую систему, обычно состоящую из метки, блоков каталогов, блоков данных и схемы индексации для поиска конкретного файла по запросу. Файловая система также помогает операционной системе отслеживать свободное пространство на разделе, резервировать необходимые секторы при создании нового файла или расширении существующего и повторно использует свободные сегменты данных, полученные в результате удаления файлов. Она также может обеспечивать поддержку избыточности данных и восстановления после ошибок.

LFS может использовать любую файловую систему, распознаваемую ядром Linux, но наиболее

распространенными типами являются ext3 и ext4. Выбор правильной файловой системы может быть сложным; это зависит от характеристик файлов и размера раздела. Например:

ext2	подходит для небольших разделов, которые редко обновляются, например /boot.
ext3	это обновленная файловая система ext2, которая включает в себя журнал, помогающий восстановить состояние раздела в случае некорректного завершения работы. Обычно используется в качестве файловой системы общего назначения.
ext4	является последней версией файловых систем семейства ext. Она предоставляет несколько новых возможностей, включая временные метки с точностью до наносекунды, создание и использование очень больших файлов (16 ТБ) и повышение скорости работы.

Другие файловые системы, включая FAT32, NTFS, ReiserFS, JFS и XFS, полезны для конкретных задач. Более подробную информацию об этих файловых системах и многих других можно найти по agpecy https://en.wikipedia.org/wiki/Comparison of file systems.

LFS предполагает, что корневая файловая система (/) имеет тип ext4. Чтобы создать файловую систему ext4 на разделе LFS, выполните следующую команду:

Замените <xxx> именем раздела LFS

Если вы используете существующий раздел подкачки, нет необходимости его форматировать. Если был создан новый раздел подкачки, его нужно будет инициализировать с помощью этой команды:

```
mkswap /dev/<yyy>
```

Замените <ууу> именем раздела подкачки.

2.6. Установка переменной \$LFS

В этой книге переменная окружения LFS будет использоваться несколько раз. Вы должны убедиться, что эта переменная всегда определена в процессе сборки LFS. Она должна быть установлена на каталог, в котором вы будете создавать свою систему LFS — мы, для примера, будем использовать /mnt/lfs, но вы можете выбрать любой другой. Если вы собираете LFS на отдельном разделе, этот каталог будет точкой монтирования для раздела. Выберите расположение каталога и установите переменную с помощью следующей команды:

export LFS=/mnt/lfs

Внимание:

Не забывайте проверять, что переменная LFS установлена, всякий раз, когда вы покидаете и снова входите в текущую рабочую среду (например, когда выполняете su для root или другого пользователя). Убедитесь, что переменная LFS настроена правильно:

echo \$LFS

Убедитесь, что в выходных данных указан путь к местоположению сборки вашей системы LFS, то есть /mnt/lfs, если вы следовали примеру. Если вывод неверен, используйте команду, указанную ранее, чтобы установить \$LFS в правильное значение каталога LFS.

Примечание:

Один из способов гарантировать, что переменная LFS всегда установлена, — отредактировать файл .bash_profile как в вашем личном домашнем каталоге, так и в /root/.bash_profile и добавить приведенную выше команду экспорта. Кроме того, оболочка, указанная в файле /etc/passwd для всех пользователей, которым нужна переменная LFS, должна быть bash, чтобы гарантировать, что файл /root/.bash profile используется как часть процесса входа в систему.

Еще один способ, который используется для входа в хост-систему. При входе в систему через диспетчер графического дисплея пользовательский .bash_profile не используется при запуске виртуального терминала. В этом случае добавьте команду экспорта в файл .bashrc для своего пользователя и root. Кроме того, некоторые дистрибутивы используют тест «if» и не запускают оставшиеся инструкции .bashrc для не интерактивного вызова bash. Обязательно разместите команду экспорта перед тестом для не интерактивного использования.

2.7. Монтирование нового раздела

Теперь, когда файловая система создана, раздел должен быть смонтирован, чтобы хостсистема могла получить доступ к нему. В книге предполагается, что файловая система монтируется в каталог, указанный в переменной LFS, описанной в предыдущем разделе.

Строго говоря, нельзя «смонтировать раздел». Монтируется файловая система на этом разделе. Но так как один раздел не может содержать несколько файловых систем, люди часто говорят о разделе и связанной с ним файловой системе так, как если бы они были одним и тем же.

Создайте точку монтирования и смонтируйте файловую систему LFS с помощью этих команд:

```
mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS
```

Замените <xxx> на имя раздела LFS.

Если вы используете несколько разделов для LFS (например, один для /, а другой для /home), смонтируйте их вот так:

```
mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS
mkdir -v $LFS/home
```

mount -v -t ext4 /dev/<yyy> \$LFS/home

Замените <xxx> и <yyy> соответствующими именами разделов.

Убедитесь, что этот новый раздел не смонтирован со слишком строгими разрешениями (такими как параметры nosuid или nodev). Запустите команду mount без каких-либо параметров, чтобы увидеть, какие параметры установлены для смонтированного раздела LFS. Если установлены nosuid и/или nodev, раздел должен быть размонтирован и смонтирован повторно.

Предупреждение:

Приведенные выше инструкции предполагают, что вы не будете перезагружать компьютер в процессе сборки LFS. Если вы выключите свою систему, вам придется либо перемонтировать раздел LFS каждый раз, когда вы перезапускаете процесс сборки, либо изменить файл /etc/fstab вашей хостсистемы, чтобы он автоматически монтировал его при загрузке. Например, вы можете добавить эту строку в свой /etc/fstab:

/dev/<xxx> /mnt/lfs ext4 defaults 1 1

Если вы используете дополнительные разделы, обязательно добавьте их.

Если вы используете раздел подкачки, убедитесь, что он включен с помощью команды swapon:

/sbin/swapon -v /dev/<zzz>

Замените <zzz> именем раздела подкачки.

Теперь, когда новый раздел LFS готов к работе, пришло время загрузить пакеты.

From:

https://wwoss.ru/ - worldwide open-source software

Permanent link:

https://wwoss.ru/doku.php?id=software:linux server:lfs:lfs-12.1:chapter02

Last update: 2025/02/14 20:43

