
2026/02/15 03:27 1/12 JSON Data Plugin

worldwide open-source software - https://wwoss.ru/

JSON Data Plugin

Совместим с «Докувики»

2024-02-06 "Kaos" да
2023-04-04 "Jack Jackrum" да
2022-07-31 "Igor" да
2020-07-29 "Hogfather" да

 Build JSON database inside DokuWiki page and use the data in the page

Последнее обновление:
2024-03-11

Предоставляет
Syntax, Helper, Action, Remote

Репозиторий
исходный код

Похож на data, jsoneditor, jsongendoc, jsontable, strata, struct

Теги: data, database, json, listing, tables, template, xmlrpc

- Janez Paternoster

Installation

Search and install the plugin using the Extension Manager. Refer to Plugins on how to install plugins
manually.

https://wwoss.ru/doku.php?id=plugins
https://wwoss.ru/lib/exe/fetch.php?tok=4a3219&media=https%3A%2F%2Fgitlab.com%2Fdokuwiki-json%2Fjson%2F-%2Fraw%2Fmaster%2Fdemo%2Fscreenshot.png
https://wwoss.ru/doku.php?id=wiki:plugin&plugintype=1#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintype=16#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintype=4#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintype=64#extension__table
https://gitlab.com/dokuwiki-json/json
https://wwoss.ru/doku.php?id=wiki:plugin:data
https://wwoss.ru/doku.php?id=wiki:plugin:jsoneditor
https://wwoss.ru/doku.php?id=wiki:plugin:jsongendoc
https://wwoss.ru/doku.php?id=wiki:plugin:jsontable
https://wwoss.ru/doku.php?id=wiki:plugin:strata
https://wwoss.ru/doku.php?id=wiki:plugin:struct
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=data#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=database#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=json#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=listing#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=tables#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=template#extension__table
https://wwoss.ru/doku.php?id=wiki:plugin&plugintag=xmlrpc#extension__table
mailto:janez.paternoster@siol.net
https://wwoss.ru/doku.php?id=plugin:extension
https://wwoss.ru/doku.php?id=plugins

Last update: 2025/02/07 10:55 wiki:plugin:json https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

https://wwoss.ru/ Printed on 2026/02/15 03:27

You may want to install other related plugins:

JSON editor plugin
JSON table plugin
JSON generate document plugin

Description

With JSON Data Plugin you can build JSON database inside DokuWiki page. JSON (JavaScript Object
Notation) is a lightweight data-interchange format. It is easy for humans to read and write. It is easy
for machines to parse and generate. It is a Document-oriented database, so no SQL is used.

To add JSON database into the wiki page write:

<json path=person>{
 "firstName": "James",
 "lastName": "Smith"
}</json>

With multiple <json> elements inside the page database is generated internally. There may also be
external data sources.

Data from internal database can be used on the page, for example:

Person described here is %$person.firstName% %$person.lastName%.

will produce: «Person described here is James Smith.»

JSON data can be used in the following ways:

Extract specific JSON basic element.
Extract specific JSON object element as a list.
Extract specific JSON array element as a table.
Print specific part of data as JSON code.
Show or hide sections of DokuWiki page, based on value of specific JSON element.
As a datasource for a javascript widget.
JSON data can also be edited and safely stored back into the dokuwiki page via ajax call.

Demo

There is a DokuWiki JSON Demo Server with JSON database integrated into DokuWiki. Also source
code of this plugin contains demo for JSON Data Definition and Usage. You can copy the contents of
the demo files into your DokuWiki and experiment with them.

Support

https://wwoss.ru/doku.php?id=plugin:jsoneditor
https://wwoss.ru/doku.php?id=plugin:jsontable
https://wwoss.ru/doku.php?id=plugin:jsongendoc
https://www.json.org/
https://en.wikipedia.org/wiki/Document-oriented database
https://en.wikipedia.org/wiki/Document-oriented database
https://dokuwiki-json-demo.1001beauty.si/

2026/02/15 03:27 3/12 JSON Data Plugin

worldwide open-source software - https://wwoss.ru/

For issues or just questions use Issues on Gitlab. Please don't email directly.

JSON Data Definition Syntax

Each page must define it's JSON data. Data are inline or are loaded from external (text) files on each
page refresh. Only those data are loaded, which are defined inside a page. Data are defined with one
or more '<json>' elements:

<json attributes>inline_json</json>

When the DokuWiki page is served, there is internally a variable, which is an empty object on the
beginning. For example json_database = {}. After the above first <json> element is rendered,
variable is something like this: json_database = {"person": {"firstname": "James",
"lastName": "Smith"}}. After each subsequent <json> element data is added to that database.
path attribute specifies, where in the json_database data are appended or replaced.

Inline JSON

Valid JSON data can be located between <json ...> and </json> tags. If both, inline data and data
referenced by 'src' attribute are specified, then inline data have precedence. Inline data will replace
overlapped data referenced by 'src' attribute.

Attribute 'id'

id attribute must be specified, when we want to access this json element from somewhere else or if
we want to write inline JSON data via ajax call. It must be unique on one page.

Attribute 'path'

path attribute specifies, where in the 'json_database' data will be added. For example
path=person1.address will write data into json_database.person1.address. . (dot) is used
as a delimiter between tokens. If tokens contains spaces, then they must be inside quotes.

If token is number, then it points to n-th array member. 0 points to first array member and so on.
Special token _FIRST_ or _LAST_ points to the first or to the last member.

If there are already data on the specified path, then new data will recursively replace overlapped
original data. (For detailed rules see php function array_replace_recursive.) This is true, if the
following two modifiers are not used.

Modifier -: if - (minus) is set in the beginning of the path attribute, then original data on the path will
be erased before new data will be written. For example path=-person1.address.

Modifier []: open square bracket immediately followed by closing square bracket at the end of the
path attribute means, that data will be appended (pushed) to the specified path on the
'json_database'. For example path=persons[] will put the data in the json_database.persons

https://gitlab.com/dokuwiki-json/json/-/issues
https://www.json.org/
https://secure.php.net/array_replace_recursive
https://secure.php.net/array_replace_recursive

Last update: 2025/02/07 10:55 wiki:plugin:json https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

https://wwoss.ru/ Printed on 2026/02/15 03:27

array in the next free index.

If path attribute is not specified, data is combined with the 'json_database' directly.

Attribute 'src'

src attribute contains a DokuWiki link to the external data. External data is a text file. It may be
document from the same dokuwiki or it can be located anywhere on the net.

src=path:to:remote_document
src=https://www.example.com/file.json
src=path:to:remote_document#specific_element
src=persons:person*
src='{"JSON": "data", "can clone": %$pre-defined.data%}'

External data may be a pure JSON file, it begins with [or {.

External data may be a text file with <json> elements inside - remote DokuWiki page. Remote
DokuWiki page then first loads data according to the rules inside its <json> elements, builds its own
database and then passes the generated database into our document. Please note, that <json>
elements inside remote dokuwiki page may also contain 'src' attribute. In this case data from that
'src' are also loaded. Data are loaded recursively. How deep recursion goes is controlled in
configuration setting 'src_recursive'.

External data may be a specific <json> element from remote dokuwiki page. In that case <json>
element must have an 'id' attribute. It is referenced as in third example above. If target <json>
element have a 'src' attribute, then data is loaded recursively.

Wildcards may be may be used in 'src' attribute. See fourth example above. In that case multiple files
are read and integrated into our database. See glob() function.

Fifth example above shows, that 'src' attribute can not only be used for the file path, it can also
contain JSON data. This way some already defined data from page can be «cloned» and reused.
Similar as in Data snippets inside inline JSON. JSON data are automatically recognized, if 'src' attribute
contains: [, { or % on the beginning and],] or % on the end.

Attribute 'src_ext'

This attribute is similar to 'src'. But the link to remote data is defined externally. Value of 'src_ext'
contains a name, which must begin with json_. For example, 'our_document' contains:

<json src_ext=json_my_data></json>

In some other page we have a link to 'our_document' with one (or more) extra argument, like this:

[[somewhere:our_document?json_my_data=path:to:remote_document]]

'our_document' will be loaded with data as specified in Query string. Rules for the file link from
Query string are the same as for the 'src' attribute. We can put multiple arguments separated by & in

https://wwoss.ru/doku.php?id=wiki:syntax#links
https://secure.php.net/glob()
https://secure.php.net/glob()
https://en.wikipedia.org/wiki/Query string
https://en.wikipedia.org/wiki/Query string

2026/02/15 03:27 5/12 JSON Data Plugin

worldwide open-source software - https://wwoss.ru/

Query string. If we want to specify specific <json> element, then we can't use #, because it is
reserved. We can use %23 instead.

If besides 'src_ext' also 'src' attribute is specified, then 'src_ext' has precedence. If link for 'src_ext' is
not defined in query string, then link from 'src' is used.

Attribute 'src_path'

If attribute src_path is specified, then only part of database referenced by 'src' attribute is used.
Path on 'src' specified by 'src_path' must exist. Rules for 'src_path' are the same as for 'path', except
modifiers are not used.

Attribute 'src_path_ext'

This attribute is similar to 'src_path', but the value is defined externally in query string. It works the
same way as attribute 'src_ext'.

Attribute 'display'

This attribute controls, which part of <json> element is rendered on html page. Multiple data can be
displayed with jQuery UI Tabs widget. Attribute 'display' is a comma separated list of tokens. Default
value for this attribute is specified in configuration setting 'json_display'. Tokens:

'original' - display data already in database combined with data from 'src' attribute. But not yet
combined with 'inline' data.
'inline' - display inline_data from <json>inline_data</json> element in textarea.
'combined' - display original data combined with 'inline' data.
'log' - display log of data sources.
'error' - display log of data sources only, of there are errors.

There are also tokens 'orig-hidden', 'inl-hidden' and 'comb-hidden', which are similar to above three
tokens. Each renders a hidden html 'div' element, which can be used for passing data to javascript
widgets.

By default, if no 'display' attribute, only tabs menu will be shown with two tabs: 'inline' and 'log'. Both
tabs will be collapsed. This can be changed in configuration settings.

If we want to add some tokens to default 'display' options, we can use comma in front of our token(s)
in 'display' attribute.

If we want only to embed data into document and hide the element, we may set display='error' to
show element only if there are errors or set display='' to unconditionally hide the element.

If we want to show contents of specific tab, then asterisk (*) should be added after the corresponding
token. If 'display' contains only one token, followed by asterisk (*), then tabs menu will be hidden. For
example 'display=combined*' will only show JSON data without the tabs menu.

If 'inline' token is specified, then inline data are shown in textarea. That data can be edited and saved

Last update: 2025/02/07 10:55 wiki:plugin:json https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

https://wwoss.ru/ Printed on 2026/02/15 03:27

to the document. When data is first changed, then 'Save' button is shown in tab area. There are some
rules, which may prevent the saving. First, <json> element must have unique 'id' specified. Second, if
someone else changed the data since last page reload, then data can not be written. It is necessary
to reload the page first (in another browser tab?) and re-enter our data. If data is successfully saved,
then 'Save' button disappears from tab area.

Attribute 'archive'

This attribute enables us to make archive of the JSON database loaded by 'src' or 'src_ext' attribute.
Archive is stored into DokuWiki page itself as JSON string. This action is triggered, when user presses
a button.

We can specify 'archive' attribute for each <jsonxxx> element on the page. We can specify
'archive=make' or 'archive=disable'. If at least one <jsonxxx> element has 'archive' attribute equal
to 'make' or 'disable', then button 'Archive JSON database' appears on the top of DokuWiki page.
When user presses that button, following procedure is triggered:

Verify for errors: user permission, file unmodified, lock, etc.1.
Search DokuWiki page and find all <jsonxxx archive=make ...> elements. Replace them2.
with <jsonxxx archive='/JSON_encoded_string/' ...>.
Find all <jsonxxx archive=disable src=... src_ext=...> elements and replace them3.
with <jsonxxx archive_disabled=disable src_disabled=...
src_ext_disabled=...>. This disables 'src' and 'src_ext' attributes.
Save the DokuWiki page.4.

When DokuWiki page is archived, then 'archive' attribute of some or all <jsonxxx> elements contains
JSON database. Data is then read from 'archive' attribute. 'src' and 'scr_ext' attributes are then
ignored. Inline JSON data remain unchanged.

JSON Data Usage Syntax

Basic pattern for render JSON data in dokuwiki is: %$... %. JSON data can be displayed in multiple
different ways, for example: simple string, as link, list of properties, table, json code, etc. Detailed
description of pattern:

%$path [(table_row_filter)] {header} #format# (filter)%

Each of: path, table_row_filter, header, format, filter is optional. Order of the brackets is
important. If square brackets are used, then table will be rendered. Else if curly brackets are used,
then list will be rendered. Otherwise single variable will be rendered. If special character must be
used inside the pattern, then use HTML code. Use % instead of %, for example.

path

'path' specifies part of the 'json_database', which will be rendered. . (dot) is used as a delimiter
between tokens. Path may contain spaces, no quotes should be used. Following characters are not
allowed inside path: '[]{}#()'. There are two special tokens, which may be used as part of the path:

https://ascii.cl/htmlcodes.htm

2026/02/15 03:27 7/12 JSON Data Plugin

worldwide open-source software - https://wwoss.ru/

FIRST selects the first element inside the array and LAST selects the last element inside he array.

table_row_filter

Square brackets will render table. table_row_filter inside brackets is optional. It will display each row
of the table, if filter is matched. Rules are the same as for filter below.

header

header is a comma separated list of key:value pairs, where key is a header description and value
is a path to variable. It is used to render a header in a table or in a list of properties.

In header it is also possible to define tooltips, which can be displayed on mouse hover on specific
table row or table cell. Tooltip is defined, if key is prepended with special string _tooltip_.

Example header for two column table and with tooltip on second column: "Header 1":data.1,
"Header 2":data.2, "_tooltip_Header 2":data.2.tooltip. This example can also be used
for a list of two properties with tooltip on second property.

If we want to use one tooltip for whole table row, then we use just _tooltip_ string for the key.

format

Format may be applied on any variable, list item or table column. It can render value of the variable
to format other than text. Supported formats are:

code - render variable as json code.
headern - render header, where n is the number from 1-5 for header level.
link - render as internal or external or windows share link. If variable is external link, it must
have protocol specified, for example 'http://...'. Variable may also have title specified, for
example 'some:link|Some Title'.
email - render as email address. Variable may have title specified.
media?L200x300 - render as internal or external media file. ? and parameters are optional.
First letter for parameter must be 'l' for left, 'c' for center or 'r' for right position of the media
file. Other part of parameter is width x height. Parameter may also be just 'linkonly'. Variable
may have title specified.
rss n nosort reverse author date details - Render as rss. Rules are the same as for
DokuWiki syntax.
ejs?template - Use Embedded JavaScript templating. EJS will render data according to the
template with usage of the powerful javaScript language. This option must be enabled in
configuration settings, it is disabled by default. template is a string designed according to the
rules for ejs, for example <$=d.toUpperCase()$>. Variable (data) is passed to javaScript as
d. Because of string limitations not all characters may be passed to the template directly:
characters %, #, :, ,, <%= and %> must be written as %, #, :, ,,
<$= and $>.

Format may be used to render single variable or specific member of list or specific table column. For
list or table, format must be a comma separated list of key:value pairs, where key is header

https://wwoss.ru/doku.php?id=wiki:syntax#rss_atom_feed_aggregation
https://ejs.co/

Last update: 2025/02/07 10:55 wiki:plugin:json https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

https://wwoss.ru/ Printed on 2026/02/15 03:27

description (same as in header) and value is format.

filter

Filter may be applied inside brackets on any variable, list or table. If it evaluates to true, contents of
the variable will be shown, otherwise not. Filter consists of one or multiple conditions separated by
keywords or or and. Condition is a path compared to some value(string, numeric, boolean or null).
Comparison operators are: ==, !=, <, >, <= or >=. Comparison operator and value may also be
omitted. There is no precedence or brackets possible. Quotes should not be used.

Examples

Type Example Description

Basic variable %$path.to.var%

If type of variable is string or
number or boolean, it just prints it
out. If it is null, it prints '(null)' by
default. This can be changed in
Configuration Settings. If type of
the variable is array or object, this
syntax prints printable members
of the array or object. If there is
nothing printable it prints '(array)'.

Use filter %$path.to.var (path.to.cond1 >= a
and path.to.cond1 <b)%

Print variable only, if filter
evaluates to true.

Print JSON data %$path.to.var #code#% Print JSON raw data.
Variable is a
link %$path.to.var #link#% Variable will render as link with

optional title.
List all
properties %$path.to.var {}% All properties of a variable will be

displayed in two column table.

List specific
properties

%$path.to.var {"Property 1":
subvar.path, "Property 2":
subvar2.path2}%

Similar as above, but only specific
properties with custom name will
be printed

List specific
properties with
format

%$path.to.var { ... } #"Property
1": email#%

Similar as above, but «Property 1»
will be rendered as email.

Simple table %$path.to.var []%

If path.to.var is well formed double
array, then table without header
will be rendered. If path.to.var is
more complex, then result may be
mixed.

Table with
header

%$path.to.var [] {"Column 1":
subvar.path, "Column 2":
subvar2.path2}%

path.to.var should be array with
similar members. header
describes header names and
members to be rendered in the
table. If only blank {} is used,
then header will be generated
automatically.

Table with
format

%$path.to.var [] { ... } #"Column
2": link}#%

Same as above, but «Column 2»
will be rendered as a link.

2026/02/15 03:27 9/12 JSON Data Plugin

worldwide open-source software - https://wwoss.ru/

Type Example Description

Table with filter %$path.to.var [(subvar.in.row ==
something)] { ... }%

Same as above, but only those
rows will be rendered, which
match the filter.

Conditionally
hide section

%$-start (path.to.cond1 ==
true)%dokuwiki-contents%$end%

Evaluate filter inside brackets. If
true, then any dokuwiki-contents
will be normally rendered. If false,
then dokuwiki-contents will be
hidden and if dokuwiki-contents
contains title, it won't be shown in
TOC.

Conditionally
hide inline text %$-starti (...)% ... %$end%

Same as above, but for inline
DokuWiki contents. Mind extra 'i'
in 'starti'.

Data snippets inside inline JSON

<json path=renault>{
 "cars": %$cars[(row_filter)](filter)%
}</json>

Inside inline json we can use %$ path [(row_filter)](filter)% syntax, which will be
replaced by data from existing JSON database. [(row_filter)] and (filter) are optional
and can be set according to the same rules, as described above.

If data is not defined, then null will be used.

If data is string, then double quotes must be used. Strings can also be concatenated. For example,
"%$path.name%, %$path.age% years" can be used for json string concatenated from two
predefined strings.

Insert referenced data into array elements

This is advanced feature. Let's say, we have two data definitions: one for items database and one for
item purchase history. For example:

<json path=items_db>{
 "apple": { "Description": "Apple", "type": "fruit" },
 "salad": { "Description": "Salad", "type": "vegetable" }
}</json>

<json path=items_purchased>[
 { "item": "apple", "quantity": 5, "date":"2019-06-22" },
 { "item": "salad", "quantity": 1, "date":"2019-06-28" },
 { "item": "apple", "quantity": 3, "date":"2019-07-10" }
]</json>

We want to extend each item in items_purchased data with item type, which is available in items_db
data definition. We can make this:

Last update: 2025/02/07 10:55 wiki:plugin:json https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

https://wwoss.ru/ Printed on 2026/02/15 03:27

<json path=items_purchased_extended>
 %$items_purchased[{item_type: items_db.{item}.type}]%
</json>

And get this:

[{ "item": "apple", "quantity": 5, "date":"2019-06-22", "item_type": "fruit"
},
 { "item": "salad", "quantity": 1, "date":"2019-06-28", "item_type":
"vegetable" },
 { "item": "apple", "quantity": 3, "date":"2019-07-10", "item_type": "fruit"
}]

Filters can also be used. Full definition for data snippet is:

%$path[(row_filter){property.path: data.path.1.{reference.path}.data.path.2,
...}](filter)%

Text macros

JSON define <json ...> ... </json> or extract %$... % patterns can be quite verbose and
some lengthy attributes may repeat across multiple pages.

It is possible to use macros defined by textinsert Plugin. First install the plugin, then define some
macros in it. Use #@macro_name@# patterns inside json define or extract patterns. JSON define or
extract patterns are preprocessed for simple replacement of macros defined globally by textinsert
Plugin.

For example, if macro table_header is defined as {"Part description": part, "Quantity
of parts": quantity}, then you can use %$data [] #@table_header@# %.

Use JavaScript widgets with JSON data

JSON plugin has interface for other sub-plugins, which can use JSON data inside JavaScript widgets for
example. It is relative simple to write such a plugin. For example JSONEditor plugin uses nice JSON
Schema based Editor JavaScript library, which generates forms based on JSON Schema. It uses
<jsoneditor> element, which is first rendered by JSON plugin. JSONeditor plugin has only
helper.php script, which renders some additional html code into page. Data from the JSON database
are already available for the widget as well as data saving mechanism.

Remote access to JSON data

DokuWiki has a XML-RPC API which can be used to access/interact with your wiki from other
applications.

https://wwoss.ru/doku.php?id=plugin:textinsert
https://wwoss.ru/doku.php?id=plugin:jsoneditor
https://json-editor.github.io/json-editor/
https://json-editor.github.io/json-editor/
https://wwoss.ru/doku.php?id=devel:xmlrpc

2026/02/15 03:27 11/12 JSON Data Plugin

worldwide open-source software - https://wwoss.ru/

Available Functions

plugin.json.get

Name plugin.json.get
Description Generate JSON database on page and return data from the JSON_path.
Parameter (string)
pagename DokuWiki page name.

Parameter (string)
JSON_path

Path on the JSON database, see attribute_path. Optional parameter,
empty by default.

Parameter (boolean)
addLog

If true, additional information about JSON generation will be returned.
Optional parameter, false by default.

Return (object) {'status': 'OK_or_error_description', 'data': 'JSON_data', 'log':
'JSON_loading_log' }

plugin.json.set

Name plugin.json.set
Description Find <json id=… element inside page and set its inline data.
Parameter (string) pagename DokuWiki page name.
Parameter (string) json_id Id of the json element, see attribute_id.

Parameter (array|string) data Data to be put inside json element. Must be an array, empty
string or valid JSON string.

Parameter (boolean) overwrite If true, existing data will be overwritten. Optional parameter, false
by default.

Return (string) 'OK' on success or error description.

plugin.json.append

Name plugin.json.append

Description
Find <json id=… element inside page and append data to its inline
database. Inline JSON data must be an array or empty. If empty, new
array will be initialized.

Parameter (string)
pagename DokuWiki page name.

Parameter (string)
json_id

Id of the json element, see attribute_id. If empty, complete page will be
treated as JSON database (page must be a JSON array, empty or non-
existent).

Parameter (array|string)
data

JSON Data to be appended inside json element. Must be an array or
valid JSON string.

Return (string) 'OK' on success or error description.

Example usage with Python

First enable DokuWiki's XML-RPC API as described. See also python-dokuwiki.

#pip install dokuwiki
import dokuwiki
wiki = dokuwiki.DokuWiki('https://path/to/dokuwiki', 'user', 'password')

https://wwoss.ru/doku.php?id=pagename
https://wwoss.ru/doku.php?id=pagename
https://wwoss.ru/doku.php?id=pagename
https://wwoss.ru/doku.php?id=devel:xmlrpc
https://python-dokuwiki.readthedocs.io/en/latest/

Last update: 2025/02/07 10:55 wiki:plugin:json https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

https://wwoss.ru/ Printed on 2026/02/15 03:27

wiki.send("plugin.json.get", "path:to:page")

person = {'firstName': 'James', 'lastName': 'Smith', 'age': 40}
wiki.send("plugin.json.set", "path:to:page", "id_attr", person)

From:
https://wwoss.ru/ - worldwide open-source software

Permanent link:
https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

Last update: 2025/02/07 10:55

https://wwoss.ru/
https://wwoss.ru/doku.php?id=wiki:plugin:json&rev=1738914945

	JSON Data Plugin
	Installation
	Description
	Demo
	Support
	JSON Data Definition Syntax
	Inline JSON
	Attribute 'id'
	Attribute 'path'
	Attribute 'src'
	Attribute 'src_ext'
	Attribute 'src_path'
	Attribute 'src_path_ext'
	Attribute 'display'
	Attribute 'archive'

	JSON Data Usage Syntax
	path
	table_row_filter
	header
	format
	filter
	Examples

	Data snippets inside inline JSON
	Insert referenced data into array elements

	Text macros
	Use JavaScript widgets with JSON data
	Remote access to JSON data
	Available Functions
	plugin.json.get
	plugin.json.set
	plugin.json.append

	Example usage with Python

