
2026/02/07 14:41 1/7 input.php

worldwide open-source software - https://wwoss.ru/

input.php

<?php

namespace dokuwiki\Input;

/**
 * Encapsulates access to the $_REQUEST array, making sure used
parameters are initialized and
 * have the correct type.
 *
 * All function access the $_REQUEST array by default, if you want to
access $_POST or $_GET
 * explicitly use the $post and $get members.
 *
 * @author Andreas Gohr <andi@splitbrain.org>
 */
class Input
{

 /** @var Post Access $_POST parameters */
 public $post;
 /** @var Get Access $_GET parameters */
 public $get;
 /** @var Server Access $_SERVER parameters */
 public $server;

 protected $access;

 /**
 * @var Callable
 */
 protected $filter;

 /**
 * Intilizes the dokuwiki\Input\Input class and it subcomponents
 */
 public function __construct()
 {
 $this->access = &$_REQUEST;
 $this->post = new Post();
 $this->get = new Get();
 $this->server = new Server();
 }

 /**
 * Apply the set filter to the given value
 *
 * @param string $data
 * @return string
 */

https://wwoss.ru/doku.php?do=export_code&id=wiki:xref:dokuwiki:inc:input:input.php&codeblock=0

Last update: 2025/01/03 18:14 wiki:xref:dokuwiki:inc:input:input.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:input:input.php

https://wwoss.ru/ Printed on 2026/02/07 14:41

 protected function applyfilter($data)
 {
 if (!$this->filter) return $data;
 return call_user_func($this->filter, $data);
 }

 /**
 * Return a filtered copy of the input object
 *
 * Expects a callable that accepts one string parameter and returns
a filtered string
 *
 * @param Callable|string $filter
 * @return Input
 */
 public function filter($filter = 'stripctl')
 {
 $this->filter = $filter;
 $clone = clone $this;
 $this->filter = '';
 return $clone;
 }

 /**
 * Check if a parameter was set
 *
 * Basically a wrapper around isset. When called on the $post and
$get subclasses,
 * the parameter is set to $_POST or $_GET and to $_REQUEST
 *
 * @see isset
 * @param string $name Parameter name
 * @return bool
 */
 public function has($name)
 {
 return isset($this->access[$name]);
 }

 /**
 * Remove a parameter from the superglobals
 *
 * Basically a wrapper around unset. When NOT called on the $post
and $get subclasses,
 * the parameter will also be removed from $_POST or $_GET
 *
 * @see isset
 * @param string $name Parameter name
 */
 public function remove($name)
 {

http://www.php.net/call_user_func
http://www.php.net/isset

2026/02/07 14:41 3/7 input.php

worldwide open-source software - https://wwoss.ru/

 if (isset($this->access[$name])) {
 unset($this->access[$name]);
 }
 // also remove from sub classes
 if (isset($this->post) && isset($_POST[$name])) {
 unset($_POST[$name]);
 }
 if (isset($this->get) && isset($_GET[$name])) {
 unset($_GET[$name]);
 }
 }

 /**
 * Access a request parameter without any type conversion
 *
 * @param string $name Parameter name
 * @param mixed $default Default to return if parameter isn't set
 * @param bool $nonempty Return $default if parameter is set but
empty()
 * @return mixed
 */
 public function param($name, $default = null, $nonempty = false)
 {
 if (!isset($this->access[$name])) return $default;
 $value = $this->applyfilter($this->access[$name]);
 if ($nonempty && empty($value)) return $default;
 return $value;
 }

 /**
 * Sets a parameter
 *
 * @param string $name Parameter name
 * @param mixed $value Value to set
 */
 public function set($name, $value)
 {
 $this->access[$name] = $value;
 }

 /**
 * Get a reference to a request parameter
 *
 * This avoids copying data in memory, when the parameter is not
set it will be created
 * and intialized with the given $default value before a reference
is returned
 *
 * @param string $name Parameter name
 * @param mixed $default If parameter is not set, initialize with
this value

http://www.php.net/isset
http://www.php.net/unset
http://www.php.net/isset
http://www.php.net/isset
http://www.php.net/unset
http://www.php.net/isset
http://www.php.net/isset
http://www.php.net/unset
http://www.php.net/isset
http://www.php.net/empty

Last update: 2025/01/03 18:14 wiki:xref:dokuwiki:inc:input:input.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:input:input.php

https://wwoss.ru/ Printed on 2026/02/07 14:41

 * @param bool $nonempty Init with $default if parameter is set but
empty()
 * @return mixed (reference)
 */
 public function &ref($name, $default = '', $nonempty = false)
 {
 if (!isset($this->access[$name]) || ($nonempty &&
empty($this->access[$name]))) {
 $this->set($name, $default);
 }

 return $this->access[$name];
 }

 /**
 * Access a request parameter as int
 *
 * @param string $name Parameter name
 * @param int $default Default to return if parameter isn't set or
is an array
 * @param bool $nonempty Return $default if parameter is set but
empty()
 * @return int
 */
 public function int($name, $default = 0, $nonempty = false)
 {
 if (!isset($this->access[$name])) return $default;
 if (is_array($this->access[$name])) return $default;
 $value = $this->applyfilter($this->access[$name]);
 if ($value === '') return $default;
 if ($nonempty && empty($value)) return $default;

 return (int)$value;
 }

 /**
 * Access a request parameter as string
 *
 * @param string $name Parameter name
 * @param string $default Default to return if parameter isn't set
or is an array
 * @param bool $nonempty Return $default if parameter is set but
empty()
 * @return string
 */
 public function str($name, $default = '', $nonempty = false)
 {
 if (!isset($this->access[$name])) return $default;
 if (is_array($this->access[$name])) return $default;
 $value = $this->applyfilter($this->access[$name]);
 if ($nonempty && empty($value)) return $default;

http://www.php.net/isset
http://www.php.net/empty
http://www.php.net/isset
http://www.php.net/is_array
http://www.php.net/empty
http://www.php.net/isset
http://www.php.net/is_array
http://www.php.net/empty

2026/02/07 14:41 5/7 input.php

worldwide open-source software - https://wwoss.ru/

 return (string)$value;
 }

 /**
 * Access a request parameter and make sure it is has a valid value
 *
 * Please note that comparisons to the valid values are not done
typesafe (request vars
 * are always strings) however the function will return the correct
type from the $valids
 * array when an match was found.
 *
 * @param string $name Parameter name
 * @param array $valids Array of valid values
 * @param mixed $default Default to return if parameter isn't set
or not valid
 * @return null|mixed
 */
 public function valid($name, $valids, $default = null)
 {
 if (!isset($this->access[$name])) return $default;
 if (is_array($this->access[$name])) return $default; // we
don't allow arrays
 $value = $this->applyfilter($this->access[$name]);
 $found = array_search($value, $valids);
 if ($found !== false) return $valids[$found]; // return the
valid value for type safety
 return $default;
 }

 /**
 * Access a request parameter as bool
 *
 * Note: $nonempty is here for interface consistency and makes not
much sense for booleans
 *
 * @param string $name Parameter name
 * @param mixed $default Default to return if parameter isn't set
 * @param bool $nonempty Return $default if parameter is set but
empty()
 * @return bool
 */
 public function bool($name, $default = false, $nonempty = false)
 {
 if (!isset($this->access[$name])) return $default;
 if (is_array($this->access[$name])) return $default;
 $value = $this->applyfilter($this->access[$name]);
 if ($value === '') return $default;
 if ($nonempty && empty($value)) return $default;

http://www.php.net/isset
http://www.php.net/is_array
http://www.php.net/array_search
http://www.php.net/isset
http://www.php.net/is_array
http://www.php.net/empty

Last update: 2025/01/03 18:14 wiki:xref:dokuwiki:inc:input:input.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:input:input.php

https://wwoss.ru/ Printed on 2026/02/07 14:41

 return (bool)$value;
 }

 /**
 * Access a request parameter as array
 *
 * @param string $name Parameter name
 * @param mixed $default Default to return if parameter isn't set
 * @param bool $nonempty Return $default if parameter is set but
empty()
 * @return array
 */
 public function arr($name, $default = array(), $nonempty = false)
 {
 if (!isset($this->access[$name])) return $default;
 if (!is_array($this->access[$name])) return $default;
 if ($nonempty && empty($this->access[$name])) return $default;

 return (array)$this->access[$name];
 }

 /**
 * Create a simple key from an array key
 *
 * This is useful to access keys where the information is given as
an array key or as a single array value.
 * For example when the information was submitted as the name of a
submit button.
 *
 * This function directly changes the access array.
 *
 * Eg. $_REQUEST['do']['save']='Speichern' becomes $_REQUEST['do']
= 'save'
 *
 * This function returns the $INPUT object itself for easy chaining
 *
 * @param string $name
 * @return Input
 */
 public function extract($name)
 {
 if (!isset($this->access[$name])) return $this;
 if (!is_array($this->access[$name])) return $this;
 $keys = array_keys($this->access[$name]);
 if (!$keys) {
 // this was an empty array
 $this->remove($name);
 return $this;
 }
 // get the first key
 $value = array_shift($keys);

http://www.php.net/array
http://www.php.net/isset
http://www.php.net/is_array
http://www.php.net/empty
http://www.php.net/array
http://www.php.net/extract
http://www.php.net/isset
http://www.php.net/is_array
http://www.php.net/array_keys
http://www.php.net/array_shift

2026/02/07 14:41 7/7 input.php

worldwide open-source software - https://wwoss.ru/

 if ($value === 0) {
 // we had a numeric array, assume the value is not in the
key
 $value = array_shift($this->access[$name]);
 }

 $this->set($name, $value);
 return $this;
 }
}

«Подробности»

From:
https://wwoss.ru/ - worldwide open-source software

Permanent link:
https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:input:input.php

Last update: 2025/01/03 18:14

http://www.php.net/array_shift
https://wwoss.ru/
https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:input:input.php

