
2026/02/19 18:11 1/8 lexer.php

worldwide open-source software - https://wwoss.ru/

Lexer.php

<?php
/**
 * Lexer adapted from Simple Test:
http://sourceforge.net/projects/simpletest/
 * For an intro to the Lexer see:
 *
https://web.archive.org/web/20120125041816/http://www.phppatterns.com/d
ocs/develop/simple_test_lexer_notes
 *
 * @author Marcus Baker http://www.lastcraft.com
 */

namespace dokuwiki\Parsing\Lexer;

/**
 * Accepts text and breaks it into tokens.
 *
 * Some optimisation to make the sure the content is only scanned by
the PHP regex
 * parser once. Lexer modes must not start with leading underscores.
 */
class Lexer
{
 /** @var ParallelRegex[] */
 protected $regexes;
 /** @var \Doku_Handler */
 protected $handler;
 /** @var StateStack */
 protected $modeStack;
 /** @var array mode "rewrites" */
 protected $mode_handlers;
 /** @var bool case sensitive? */
 protected $case;

 /**
 * Sets up the lexer in case insensitive matching by default.
 *
 * @param \Doku_Handler $handler Handling strategy by reference.
 * @param string $start Starting handler.
 * @param boolean $case True for case sensitive.
 */
 public function __construct($handler, $start = "accept", $case =
false)
 {
 $this->case = $case;
 $this->regexes = array();
 $this->handler = $handler;
 $this->modeStack = new StateStack($start);
 $this->mode_handlers = array();

https://wwoss.ru/doku.php?do=export_code&id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&codeblock=0
http://www.php.net/array
http://www.php.net/array

Last
update:
2025/01/16
13:23

wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&rev=1737023034

https://wwoss.ru/ Printed on 2026/02/19 18:11

 }

 /**
 * Adds a token search pattern for a particular parsing mode.
 *
 * The pattern does not change the current mode.
 *
 * @param string $pattern Perl style regex, but (and)
 * lose the usual meaning.
 * @param string $mode Should only apply this
 * pattern when dealing with
 * this type of input.
 */
 public function addPattern($pattern, $mode = "accept")
 {
 if (! isset($this->regexes[$mode])) {
 $this->regexes[$mode] = new ParallelRegex($this->case);
 }
 $this->regexes[$mode]->addPattern($pattern);
 }

 /**
 * Adds a pattern that will enter a new parsing mode.
 *
 * Useful for entering parenthesis, strings, tags, etc.
 *
 * @param string $pattern Perl style regex, but (and) lose
the usual meaning.
 * @param string $mode Should only apply this pattern when
dealing with this type of input.
 * @param string $new_mode Change parsing to this new nested
mode.
 */
 public function addEntryPattern($pattern, $mode, $new_mode)
 {
 if (! isset($this->regexes[$mode])) {
 $this->regexes[$mode] = new ParallelRegex($this->case);
 }
 $this->regexes[$mode]->addPattern($pattern, $new_mode);
 }

 /**
 * Adds a pattern that will exit the current mode and re-enter the
previous one.
 *
 * @param string $pattern Perl style regex, but (and) lose
the usual meaning.
 * @param string $mode Mode to leave.
 */

http://www.php.net/isset
http://www.php.net/isset

2026/02/19 18:11 3/8 lexer.php

worldwide open-source software - https://wwoss.ru/

 public function addExitPattern($pattern, $mode)
 {
 if (! isset($this->regexes[$mode])) {
 $this->regexes[$mode] = new ParallelRegex($this->case);
 }
 $this->regexes[$mode]->addPattern($pattern, "__exit");
 }

 /**
 * Adds a pattern that has a special mode.
 *
 * Acts as an entry and exit pattern in one go, effectively calling
a special
 * parser handler for this token only.
 *
 * @param string $pattern Perl style regex, but (and) lose
the usual meaning.
 * @param string $mode Should only apply this pattern when
dealing with this type of input.
 * @param string $special Use this mode for this one token.
 */
 public function addSpecialPattern($pattern, $mode, $special)
 {
 if (! isset($this->regexes[$mode])) {
 $this->regexes[$mode] = new ParallelRegex($this->case);
 }
 $this->regexes[$mode]->addPattern($pattern, "_$special");
 }

 /**
 * Adds a mapping from a mode to another handler.
 *
 * @param string $mode Mode to be remapped.
 * @param string $handler New target handler.
 */
 public function mapHandler($mode, $handler)
 {
 $this->mode_handlers[$mode] = $handler;
 }

 /**
 * Splits the page text into tokens.
 *
 * Will fail if the handlers report an error or if no content is
consumed. If successful then each
 * unparsed and parsed token invokes a call to the held listener.
 *
 * @param string $raw Raw HTML text.
 * @return boolean True on success, else false.
 */
 public function parse($raw)

http://www.php.net/isset
http://www.php.net/isset

Last
update:
2025/01/16
13:23

wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&rev=1737023034

https://wwoss.ru/ Printed on 2026/02/19 18:11

 {
 if (! isset($this->handler)) {
 return false;
 }
 $initialLength = strlen($raw);
 $length = $initialLength;
 $pos = 0;
 while (is_array($parsed = $this->reduce($raw))) {
 list($unmatched, $matched, $mode) = $parsed;
 $currentLength = strlen($raw);
 $matchPos = $initialLength - $currentLength -
strlen($matched);
 if (! $this->dispatchTokens($unmatched, $matched, $mode,
$pos, $matchPos)) {
 return false;
 }
 if ($currentLength == $length) {
 return false;
 }
 $length = $currentLength;
 $pos = $initialLength - $currentLength;
 }
 if (!$parsed) {
 return false;
 }
 return $this->invokeHandler($raw, DOKU_LEXER_UNMATCHED, $pos);
 }

 /**
 * Gives plugins access to the mode stack
 *
 * @return StateStack
 */
 public function getModeStack()
 {
 return $this->modeStack;
 }

 /**
 * Sends the matched token and any leading unmatched
 * text to the parser changing the lexer to a new
 * mode if one is listed.
 *
 * @param string $unmatched Unmatched leading portion.
 * @param string $matched Actual token match.
 * @param bool|string $mode Mode after match. A boolean false mode
causes no change.
 * @param int $initialPos
 * @param int $matchPos Current byte index location in raw doc

http://www.php.net/isset
http://www.php.net/strlen
http://www.php.net/is_array
http://www.php.net/list
http://www.php.net/strlen
http://www.php.net/strlen

2026/02/19 18:11 5/8 lexer.php

worldwide open-source software - https://wwoss.ru/

thats being parsed
 * @return boolean False if there was any error from
the parser.
 */
 protected function dispatchTokens($unmatched, $matched, $mode,
$initialPos, $matchPos)
 {
 if (! $this->invokeHandler($unmatched, DOKU_LEXER_UNMATCHED,
$initialPos)) {
 return false;
 }
 if ($this->isModeEnd($mode)) {
 if (! $this->invokeHandler($matched, DOKU_LEXER_EXIT,
$matchPos)) {
 return false;
 }
 return $this->modeStack->leave();
 }
 if ($this->isSpecialMode($mode)) {
 $this->modeStack->enter($this->decodeSpecial($mode));
 if (! $this->invokeHandler($matched, DOKU_LEXER_SPECIAL,
$matchPos)) {
 return false;
 }
 return $this->modeStack->leave();
 }
 if (is_string($mode)) {
 $this->modeStack->enter($mode);
 return $this->invokeHandler($matched, DOKU_LEXER_ENTER,
$matchPos);
 }
 return $this->invokeHandler($matched, DOKU_LEXER_MATCHED,
$matchPos);
 }

 /**
 * Tests to see if the new mode is actually to leave the current
mode and pop an item from the matching
 * mode stack.
 *
 * @param string $mode Mode to test.
 * @return boolean True if this is the exit mode.
 */
 protected function isModeEnd($mode)
 {
 return ($mode === "__exit");
 }

 /**
 * Test to see if the mode is one where this mode is entered for
this token only and automatically

http://www.php.net/is_string

Last
update:
2025/01/16
13:23

wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&rev=1737023034

https://wwoss.ru/ Printed on 2026/02/19 18:11

 * leaves immediately afterwoods.
 *
 * @param string $mode Mode to test.
 * @return boolean True if this is the exit mode.
 */
 protected function isSpecialMode($mode)
 {
 return (strncmp($mode, "_", 1) == 0);
 }

 /**
 * Strips the magic underscore marking single token modes.
 *
 * @param string $mode Mode to decode.
 * @return string Underlying mode name.
 */
 protected function decodeSpecial($mode)
 {
 return substr($mode, 1);
 }

 /**
 * Calls the parser method named after the current mode.
 *
 * Empty content will be ignored. The lexer has a parser handler
for each mode in the lexer.
 *
 * @param string $content Text parsed.
 * @param boolean $is_match Token is recognised rather
 * than unparsed data.
 * @param int $pos Current byte index location in raw doc
 * thats being parsed
 * @return bool
 */
 protected function invokeHandler($content, $is_match, $pos)
 {
 if (($content === "") || ($content === false)) {
 return true;
 }
 $handler = $this->modeStack->getCurrent();
 if (isset($this->mode_handlers[$handler])) {
 $handler = $this->mode_handlers[$handler];
 }

 // modes starting with plugin_ are all handled by the same
 // handler but with an additional parameter
 if (substr($handler, 0, 7)=='plugin_') {
 list($handler,$plugin) = sexplode('_', $handler, 2, '');
 return $this->handler->$handler($content, $is_match, $pos,

http://www.php.net/strncmp
http://www.php.net/substr
http://www.php.net/isset
http://www.php.net/substr
http://www.php.net/list

2026/02/19 18:11 7/8 lexer.php

worldwide open-source software - https://wwoss.ru/

$plugin);
 }

 return $this->handler->$handler($content, $is_match, $pos);
 }

 /**
 * Tries to match a chunk of text and if successful removes the
recognised chunk and any leading
 * unparsed data. Empty strings will not be matched.
 *
 * @param string $raw The subject to parse. This is the
content that will be eaten.
 * @return array|bool Three item list of unparsed content
followed by the
 * recognised token and finally the
action the parser is to take.
 * True if no match, false if there is a
parsing error.
 */
 protected function reduce(&$raw)
 {
 if (! isset($this->regexes[$this->modeStack->getCurrent()])) {
 return false;
 }
 if ($raw === "") {
 return true;
 }
 if ($action =
$this->regexes[$this->modeStack->getCurrent()]->split($raw, $split)) {
 list($unparsed, $match, $raw) = $split;
 return array($unparsed, $match, $action);
 }
 return true;
 }

 /**
 * Escapes regex characters other than (,) and /
 *
 * @param string $str
 * @return string
 */
 public static function escape($str)
 {
 $chars = array(
 '/\\\\/',
 '/\./',
 '/\+/',
 '/*/',
 '/\?/',
 '/\[/',

http://www.php.net/isset
http://www.php.net/split
http://www.php.net/list
http://www.php.net/array
http://www.php.net/array

Last
update:
2025/01/16
13:23

wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&rev=1737023034

https://wwoss.ru/ Printed on 2026/02/19 18:11

 '/\^/',
 '/\]/',
 '/\$/',
 '/\{/',
 '/\}/',
 '/\=/',
 '/\!/',
 '/\</',
 '/\>/',
 '/\|/',
 '/\:/'
);

 $escaped = array(
 '\\\\\\\\',
 '\.',
 '\+',
 '*',
 '\?',
 '\[',
 '\^',
 '\]',
 '\$',
 '\{',
 '\}',
 '\=',
 '\!',
 '\<',
 '\>',
 '\|',
 '\:'
);
 return preg_replace($chars, $escaped, $str);
 }
}

From:
https://wwoss.ru/ - worldwide open-source software

Permanent link:
https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&rev=1737023034

Last update: 2025/01/16 13:23

http://www.php.net/array
http://www.php.net/preg_replace
https://wwoss.ru/
https://wwoss.ru/doku.php?id=wiki:xref:dokuwiki:inc:parsing:lexer:lexer.php&rev=1737023034

