
Linux From Scratch

Version 7.10

Created by Gerard Beekmans
Managing Editor: Bruce Dubbs

Linux From Scratch: Version 7.10
by Created by Gerard Beekmans and Managing Editor: Bruce Dubbs
Copyright © 1999-2016 Gerard Beekmans

Copyright © 1999-2016, Gerard Beekmans

All rights reserved.

This book is licensed under a Creative Commons License.

Computer instructions may be extracted from the book under the MIT License.

Linux® is a registered trademark of Linus Torvalds.

Linux From Scratch - Version 7.10

iii

Table of Contents
Preface ... viii

i. Foreword .. viii
ii. Audience ... viii
iii. LFS Target Architectures .. ix
iv. LFS and Standards ... x
v. Rationale for Packages in the Book ... xi
vi. Prerequisites ... xvi
vii. Typography ... xvi
viii. Structure ... xvii
ix. Errata ... xviii

I. Introduction ... 1
1. Introduction .. 2

1.1. How to Build an LFS System .. 2
1.2. What's new since the last release ... 2
1.3. Changelog ... 4
1.4. Resources .. 7
1.5. Help ... 8

II. Preparing for the Build ... 10
2. Preparing the Host System .. 11

2.1. Introduction ... 11
2.2. Host System Requirements ... 11
2.3. Building LFS in Stages .. 15
2.4. Creating a New Partition .. 16
2.5. Creating a File System on the Partition ... 18
2.6. Setting The $LFS Variable ... 18
2.7. Mounting the New Partition ... 19

3. Packages and Patches .. 20
3.1. Introduction ... 20
3.2. All Packages ... 20
3.3. Needed Patches ... 27

4. Final Preparations .. 29
4.1. Introduction ... 29
4.2. Creating the $LFS/tools Directory ... 29
4.3. Adding the LFS User ... 29
4.4. Setting Up the Environment ... 30
4.5. About SBUs .. 31
4.6. About the Test Suites ... 32

5. Constructing a Temporary System .. 34
5.1. Introduction ... 34
5.2. Toolchain Technical Notes ... 34
5.3. General Compilation Instructions ... 36
5.4. Binutils-2.27 - Pass 1 ... 37
5.5. GCC-6.2.0 - Pass 1 ... 39
5.6. Linux-4.7.2 API Headers .. 42
5.7. Glibc-2.24 ... 43

Linux From Scratch - Version 7.10

iv

5.8. Libstdc++-6.2.0 ... 46
5.9. Binutils-2.27 - Pass 2 ... 48
5.10. GCC-6.2.0 - Pass 2 ... 50
5.11. Tcl-core-8.6.6 .. 53
5.12. Expect-5.45 ... 55
5.13. DejaGNU-1.6 .. 57
5.14. Check-0.10.0 ... 58
5.15. Ncurses-6.0 .. 59
5.16. Bash-4.3.30 ... 60
5.17. Bzip2-1.0.6 .. 61
5.18. Coreutils-8.25 .. 62
5.19. Diffutils-3.5 ... 63
5.20. File-5.28 .. 64
5.21. Findutils-4.6.0 ... 65
5.22. Gawk-4.1.3 .. 66
5.23. Gettext-0.19.8.1 ... 67
5.24. Grep-2.25 .. 68
5.25. Gzip-1.8 ... 69
5.26. M4-1.4.17 .. 70
5.27. Make-4.2.1 .. 71
5.28. Patch-2.7.5 ... 72
5.29. Perl-5.24.0 ... 73
5.30. Sed-4.2.2 ... 74
5.31. Tar-1.29 ... 75
5.32. Texinfo-6.1 .. 76
5.33. Util-linux-2.28.1 .. 77
5.34. Xz-5.2.2 ... 78
5.35. Stripping .. 79
5.36. Changing Ownership .. 79

III. Building the LFS System .. 80
6. Installing Basic System Software .. 81

6.1. Introduction ... 81
6.2. Preparing Virtual Kernel File Systems .. 82
6.3. Package Management ... 83
6.4. Entering the Chroot Environment .. 86
6.5. Creating Directories .. 87
6.6. Creating Essential Files and Symlinks ... 88
6.7. Linux-4.7.2 API Headers .. 91
6.8. Man-pages-4.07 ... 92
6.9. Glibc-2.24 ... 93
6.10. Adjusting the Toolchain ... 100
6.11. Zlib-1.2.8 ... 102
6.12. File-5.28 .. 103
6.13. Binutils-2.27 .. 104
6.14. GMP-6.1.1 ... 106
6.15. MPFR-3.1.4 ... 108
6.16. MPC-1.0.3 ... 109

Linux From Scratch - Version 7.10

v

6.17. GCC-6.2.0 ... 110
6.18. Bzip2-1.0.6 .. 115
6.19. Pkg-config-0.29.1 .. 117
6.20. Ncurses-6.0 .. 118
6.21. Attr-2.4.47 ... 121
6.22. Acl-2.2.52 .. 123
6.23. Libcap-2.25 ... 125
6.24. Sed-4.2.2 ... 126
6.25. Shadow-4.2.1 ... 127
6.26. Psmisc-22.21 ... 131
6.27. Iana-Etc-2.30 ... 132
6.28. M4-1.4.17 .. 133
6.29. Bison-3.0.4 .. 134
6.30. Flex-2.6.1 .. 135
6.31. Grep-2.25 .. 136
6.32. Readline-6.3 .. 137
6.33. Bash-4.3.30 ... 139
6.34. Bc-1.06.95 ... 141
6.35. Libtool-2.4.6 .. 142
6.36. GDBM-1.12 .. 143
6.37. Gperf-3.0.4 .. 144
6.38. Expat-2.2.0 .. 145
6.39. Inetutils-1.9.4 .. 146
6.40. Perl-5.24.0 ... 148
6.41. XML::Parser-2.44 ... 151
6.42. Intltool-0.51.0 .. 152
6.43. Autoconf-2.69 ... 153
6.44. Automake-1.15 .. 155
6.45. Xz-5.2.2 ... 156
6.46. Kmod-23 ... 158
6.47. Gettext-0.19.8.1 ... 160
6.48. Procps-ng-3.3.12 ... 162
6.49. E2fsprogs-1.43.1 ... 164
6.50. Coreutils-8.25 .. 167
6.51. Diffutils-3.5 ... 172
6.52. Gawk-4.1.3 .. 173
6.53. Findutils-4.6.0 ... 174
6.54. Groff-1.22.3 ... 176
6.55. GRUB-2.02~beta3 .. 179
6.56. Less-481 .. 181
6.57. Gzip-1.8 ... 182
6.58. IPRoute2-4.7.0 .. 184
6.59. Kbd-2.0.3 ... 186
6.60. Libpipeline-1.4.1 ... 188
6.61. Make-4.2.1 .. 189
6.62. Patch-2.7.5 ... 190
6.63. Sysklogd-1.5.1 ... 191

Linux From Scratch - Version 7.10

vi

6.64. Sysvinit-2.88dsf .. 193
6.65. Eudev-3.2 .. 194
6.66. Util-linux-2.28.1 .. 196
6.67. Man-DB-2.7.5 ... 201
6.68. Tar-1.29 ... 204
6.69. Texinfo-6.1 .. 205
6.70. Vim-7.4 ... 207
6.71. About Debugging Symbols .. 210
6.72. Stripping Again ... 210
6.73. Cleaning Up .. 211

7. System Configuration .. 212
7.1. Introduction ... 212
7.2. LFS-Bootscripts-20150222 ... 213
7.3. Overview of Device and Module Handling ... 215
7.4. Managing Devices .. 218
7.5. General Network Configuration ... 221
7.6. System V Bootscript Usage and Configuration ... 223
7.7. The Bash Shell Startup Files .. 233
7.8. Creating the /etc/inputrc File .. 235
7.9. Creating the /etc/shells File .. 237

8. Making the LFS System Bootable .. 238
8.1. Introduction ... 238
8.2. Creating the /etc/fstab File .. 238
8.3. Linux-4.7.2 .. 240
8.4. Using GRUB to Set Up the Boot Process ... 244

9. The End .. 246
9.1. The End ... 246
9.2. Get Counted .. 246
9.3. Rebooting the System ... 246
9.4. What Now? ... 248

IV. Appendices ... 249
A. Acronyms and Terms ... 250
B. Acknowledgments ... 253
C. Dependencies ... 256
D. Boot and sysconfig scripts version-20150222 ... 267

D.1. /etc/rc.d/init.d/rc .. 267
D.2. /lib/lsb/init-functions .. 271
D.3. /etc/rc.d/init.d/mountvirtfs .. 285
D.4. /etc/rc.d/init.d/modules ... 286
D.5. /etc/rc.d/init.d/udev ... 288
D.6. /etc/rc.d/init.d/swap .. 289
D.7. /etc/rc.d/init.d/setclock .. 290
D.8. /etc/rc.d/init.d/checkfs .. 292
D.9. /etc/rc.d/init.d/mountfs .. 294
D.10. /etc/rc.d/init.d/udev_retry ... 296
D.11. /etc/rc.d/init.d/cleanfs ... 297
D.12. /etc/rc.d/init.d/console .. 299

Linux From Scratch - Version 7.10

vii

D.13. /etc/rc.d/init.d/localnet .. 301
D.14. /etc/rc.d/init.d/sysctl .. 303
D.15. /etc/rc.d/init.d/sysklogd .. 304
D.16. /etc/rc.d/init.d/network .. 305
D.17. /etc/rc.d/init.d/sendsignals .. 307
D.18. /etc/rc.d/init.d/reboot .. 308
D.19. /etc/rc.d/init.d/halt ... 309
D.20. /etc/rc.d/init.d/template ... 309
D.21. /etc/sysconfig/modules ... 310
D.22. /etc/sysconfig/createfiles .. 311
D.23. /etc/sysconfig/udev-retry .. 311
D.24. /sbin/ifup ... 312
D.25. /sbin/ifdown .. 314
D.26. /lib/services/ipv4-static ... 316
D.27. /lib/services/ipv4-static-route ... 318

E. Udev configuration rules ... 321
E.1. 55-lfs.rules .. 321

F. LFS Licenses ... 322
F.1. Creative Commons License ... 322
F.2. The MIT License .. 326

Index ... 327

Linux From Scratch - Version 7.10

viii

Preface
Foreword

My journey to learn and better understand Linux began over a decade ago, back in 1998. I had just installed my first
Linux distribution and had quickly become intrigued with the whole concept and philosophy behind Linux.

There are always many ways to accomplish a single task. The same can be said about Linux distributions. A great many
have existed over the years. Some still exist, some have morphed into something else, yet others have been relegated
to our memories. They all do things differently to suit the needs of their target audience. Because so many different
ways to accomplish the same end goal exist, I began to realize I no longer had to be limited by any one implementation.
Prior to discovering Linux, we simply put up with issues in other Operating Systems as you had no choice. It was what
it was, whether you liked it or not. With Linux, the concept of choice began to emerge. If you didn't like something,
you were free, even encouraged, to change it.

I tried a number of distributions and could not decide on any one. They were great systems in their own right. It wasn't
a matter of right and wrong anymore. It had become a matter of personal taste. With all that choice available, it became
apparent that there would not be a single system that would be perfect for me. So I set out to create my own Linux
system that would fully conform to my personal preferences.

To truly make it my own system, I resolved to compile everything from source code instead of using pre-compiled
binary packages. This “perfect” Linux system would have the strengths of various systems without their perceived
weaknesses. At first, the idea was rather daunting. I remained committed to the idea that such a system could be built.

After sorting through issues such as circular dependencies and compile-time errors, I finally built a custom-built Linux
system. It was fully operational and perfectly usable like any of the other Linux systems out there at the time. But it
was my own creation. It was very satisfying to have put together such a system myself. The only thing better would
have been to create each piece of software myself. This was the next best thing.

As I shared my goals and experiences with other members of the Linux community, it became apparent that there was
a sustained interest in these ideas. It quickly became plain that such custom-built Linux systems serve not only to meet
user specific requirements, but also serve as an ideal learning opportunity for programmers and system administrators
to enhance their (existing) Linux skills. Out of this broadened interest, the Linux From Scratch Project was born.

This Linux From Scratch book is the central core around that project. It provides the background and instructions
necessary for you to design and build your own system. While this book provides a template that will result in a correctly
working system, you are free to alter the instructions to suit yourself, which is, in part, an important part of this project.
You remain in control; we just lend a helping hand to get you started on your own journey.

I sincerely hope you will have a great time working on your own Linux From Scratch system and enjoy the numerous
benefits of having a system that is truly your own.

--
Gerard Beekmans
gerard@linuxfromscratch.org

Audience
There are many reasons why you would want to read this book. One of the questions many people raise is, “why go
through all the hassle of manually building a Linux system from scratch when you can just download and install an
existing one?”

Linux From Scratch - Version 7.10

ix

One important reason for this project's existence is to help you learn how a Linux system works from the inside out.
Building an LFS system helps demonstrate what makes Linux tick, and how things work together and depend on each
other. One of the best things that this learning experience can provide is the ability to customize a Linux system to
suit your own unique needs.

Another key benefit of LFS is that it allows you to have more control over the system without relying on someone else's
Linux implementation. With LFS, you are in the driver's seat and dictate every aspect of the system.

LFS allows you to create very compact Linux systems. When installing regular distributions, you are often forced to
install a great many programs which are probably never used or understood. These programs waste resources. You
may argue that with today's hard drive and CPUs, such resources are no longer a consideration. Sometimes, however,
you are still constrained by size considerations if nothing else. Think about bootable CDs, USB sticks, and embedded
systems. Those are areas where LFS can be beneficial.

Another advantage of a custom built Linux system is security. By compiling the entire system from source code, you are
empowered to audit everything and apply all the security patches desired. It is no longer necessary to wait for somebody
else to compile binary packages that fix a security hole. Unless you examine the patch and implement it yourself, you
have no guarantee that the new binary package was built correctly and adequately fixes the problem.

The goal of Linux From Scratch is to build a complete and usable foundation-level system. If you do not wish to build
your own Linux system from scratch, you may not entirely benefit from the information in this book.

There are too many other good reasons to build your own LFS system to list them all here. In the end, education is by
far the most powerful of reasons. As you continue in your LFS experience, you will discover the power that information
and knowledge truly bring.

LFS Target Architectures
The primary target architectures of LFS are the AMD/Intel x86 (32-bit) and x86_64 (64-bit) CPUs. On the other hand,
the instructions in this book are also known to work, with some modifications, with the Power PC and ARM CPUs.
To build a system that utilizes one of these CPUs, the main prerequisite, in addition to those on the next few pages, is
an existing Linux system such as an earlier LFS installation, Ubuntu, Red Hat/Fedora, SuSE, or other distribution that
targets the architecture that you have. Also note that a 32-bit distribution can be installed and used as a host system
on a 64-bit AMD/Intel computer.

Some other facts about 64-bit systems need to be added here. When compared to a 32-bit system, the sizes of executable
programs are slightly larger and the execution speeds are only slightly faster. For example, in a test build of LFS-6.5
on a Core2Duo CPU based system, the following statistics were measured:

Architecture Build Time Build Size
32-bit 198.5 minutes 648 MB
64-bit 190.6 minutes 709 MB

As you can see, the 64-bit build is only 4% faster and is 9% larger than the 32-bit build. The gain from going to a 64-bit
system is relatively minimal. Of course, if you have more than 4GB of RAM or want to manipulate data that exceeds
4GB, the advantages of a 64-bit system are substantial.

The default 64-bit build that results from LFS is considered a "pure" 64-bit system. That is, it supports 64-bit executables
only. Building a "multi-lib" system requires compiling many applications twice, once for a 32-bit system and once
for a 64-bit system. This is not directly supported in LFS because it would interfere with the educational objective
of providing the instructions needed for a straightforward base Linux system. You can refer to the Cross Linux From
Scratch project for this advanced topic.

http://trac.clfs.org/
http://trac.clfs.org/

Linux From Scratch - Version 7.10

x

LFS and Standards
The structure of LFS follows Linux standards as closely as possible. The primary standards are:

• POSIX.1-2008.

• Filesystem Hierarchy Standard (FHS) Version 3.0

• Linux Standard Base (LSB) Version 5.0

The LSB has four separate standards: Core, Desktop, Runtime Languages, and Imaging. In addition to generic
requirements there are also architecture specific requirements. There are also two areas for trial use: Gtk3 and
Graphics. LFS attempts to conform to the architectures discussed in the previous section.

Note

Many people do not agree with the requirements of the LSB. The main purpose of defining it is to ensure
that proprietary software will be able to be installed and run properly on a compliant system. Since LFS
is source based, the user has complete control over what packages are desired and many choose not to
install some packages that are specified by the LSB.

Creating a complete LFS system capable of passing the LSB certifications tests is possible, but not without many
additional packages that are beyond the scope of LFS. These additional packages have installation instructions in BLFS.

Packages supplied by LFS needed to satisfy the LSB Requirements

LSB Core: Bash, Bc, Binutils, Coreutils, Diffutils, File, Findutils, Gawk,
Grep, GTK+2, Gzip, M4, Man-DB, Ncurses, Procps, Psmisc,
Sed, Shadow, Tar, Util-linux, Zlib

LSB Desktop: None

LSB Runtime Languages: Perl

LSB Imaging: None

LSB Gtk3 and LSB Graphics (Trial Use): None

Packages supplied by BLFS needed to satisfy the LSB Requirements

LSB Core: At, Batch (a part of At), Cpio, Ed, Fcrontab, Initd-tools,
Lsb_release, NSPR, NSS, PAM, Pax, Sendmail (or Postfix or
Exim), time

LSB Desktop: Alsa, ATK, Cairo, Desktop-file-utils, Freetype, Fontconfig,
Gdk-pixbuf, Glib2, Icon-naming-utils, Libjpeg-turbo, Libpng,
Libtiff, Libxml2, MesaLib, Pango, Qt4, Xdg-utils, Xorg

LSB Runtime Languages: Python, Libxml2, Libxslt

LSB Imaging: CUPS, Cups-filters, Ghostscript, SANE

LSB Gtk3 and LSB Graphics (Trial Use): GTK+3

Packages not supplied by LFS or BLFS needed to satisfy the LSB Requirements

LSB Core: None

LSB Desktop: None

http://pubs.opengroup.org/onlinepubs/9699919799/
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/lsb.shtml

Linux From Scratch - Version 7.10

xi

LSB Runtime Languages: None

LSB Imaging: None

LSB Gtk3 and LSB Graphics (Trial Use): None

Rationale for Packages in the Book
As stated earlier, the goal of LFS is to build a complete and usable foundation-level system. This includes all packages
needed to replicate itself while providing a relatively minimal base from which to customize a more complete system
based on the choices of the user. This does not mean that LFS is the smallest system possible. Several important packages
are included that are not strictly required. The lists below document the rationale for each package in the book.

• Acl

This package contains utilities to administer Access Control Lists, which are used to define more fine-grained
discretionary access rights for files and directories.

• Attr

This package contains programs for administering extended attributes on filesystem objects.

• Autoconf

This package contains programs for producing shell scripts that can automatically configure source code from a
developer's template. It is often needed to rebuild a package after updates to the build procedures.

• Automake

This package contains programs for generating Make files from a template. It is often needed to rebuild a package
after updates to the build procedures.

• Bash

This package satisfies an LSB core requirement to provide a Bourne Shell interface to the system. It was chosen
over other shell packages because of its common usage and extensive capabilities beyond basic shell functions.

• Bc

This package provides an arbitrary precision numeric processing language. It satisfies a requirement needed when
building the Linux kernel.

• Binutils

This package contains a linker, an assembler, and other tools for handling object files. The programs in this
package are needed to compile most of the packages in an LFS system and beyond.

• Bison

This package contains the GNU version of yacc (Yet Another Compiler Compiler) needed to build several other
LFS programs.

• Bzip2

This package contains programs for compressing and decompressing files. It is required to decompress many LFS
packages.

• Check

This package contains a test harness for other programs. It is only installed in the temporary toolchain.

Linux From Scratch - Version 7.10

xii

• Coreutils

This package contains a number of essential programs for viewing and manipulating files and directories. These
programs are needed for command line file management, and are necessary for the installation procedures of every
package in LFS.

• DejaGNU

This package contains a framework for testing other programs. It is only installed in the temporary toolchain.

• Diffutils

This package contains programs that show the differences between files or directories. These programs can be used
to create patches, and are also used in many packages' build procedures.

• E2fsprogs

This package contains the utilities for handling the ext2, ext3 and ext4 file systems. These are the most common
and thoroughly tested file systems that Linux supports.

• Eudev

This package is a device manager. It dynamically controls the entries in the /dev directory as devices are added or
removed from the system.

• Expat

This package contains a relatively small XML parsing library. It is required by the XML::Parser Perl module.

• Expect

This package contains a program for carrying out scripted dialogues with other interactive programs. It is
commonly used for testing other packages. It is only installed in the temporary toolchain.

• File

This package contains a utility for determining the type of a given file or files. A few packages need it to build.

• Findutils

This package contains programs to find files in a file system. It is used in many packages' build scripts.

• Flex

This package contains a utility for generating programs that recognize patterns in text. It is the GNU version of the
lex (lexical analyzer) program. It is required to build several LFS packages.

• Gawk

This package contains programs for manipulating text files. It is the GNU version of awk (Aho-Weinberg-
Kernighan). It is used in many other packages' build scripts.

• Gcc

This package is the Gnu Compiler Collection. It contains the C and C++ compilers as well as several others not
built by LFS.

• GDBM

This package contains the GNU Database Manager library. It is used by one other LFS package, Man-DB.

• Gettext

Linux From Scratch - Version 7.10

xiii

This package contains utilities and libraries for internationalization and localization of numerous packages.

• Glibc

This package contains the main C library. Linux programs would not run without it.

• GMP

This package contains math libraries that provide useful functions for arbitrary precision arithmetic. It is required
to build Gcc.

• Gperf

This package contains a program that generates a perfect hash function from a key set. It is required for Eudev.

• Grep

This package contains programs for searching through files. These programs are used by most packages' build
scripts.

• Groff

This package contains programs for processing and formatting text. One important function of these programs is to
format man pages.

• GRUB

This package is the Grand Unified Boot Loader. It is one of several boot loaders available, but is the most flexible.

• Gzip

This package contains programs for compressing and decompressing files. It is needed to decompress many
packages in LFS and beyond.

• Iana-etc

This package provides data for network services and protocols. It is needed to enable proper networking
capabilities.

• Inetutils

This package contains programs for basic network administration.

• Intltool

This package contains tools for extracting translatable strings from source files.

• IProute2

This package contains programs for basic and advanced IPv4 and IPv6 networking. It was chosen over the other
common network tools package (net-tools) for its IPv6 capabilities.

• Kbd

This package contains key-table files, keyboard utilities for non-US keyboards, and a number of console fonts.

• Kmod

This package contains programs needed to administer Linux kernel modules.

• Less

This package contains a very nice text file viewer that allows scrolling up or down when viewing a file. It is also
used by Man-DB for viewing manpages.

Linux From Scratch - Version 7.10

xiv

• Libcap

This package implements the user-space interfaces to the POSIX 1003.1e capabilities available in Linux kernels.

• Libpipeline

The Libpipeline package contains a library for manipulating pipelines of subprocesses in a flexible and convenient
way. It is required by the Man-DB package.

• Libtool

This package contains the GNU generic library support script. It wraps the complexity of using shared libraries in
a consistent, portable interface. It is needed by the test suites in other LFS packages.

• Linux Kernel

This package is the Operating System. It is the Linux in the GNU/Linux environment.

• M4

This package contains a general text macro processor useful as a build tool for other programs.

• Make

This package contains a program for directing the building of packages. It is required by almost every package in
LFS.

• Man-DB

This package contains programs for finding and viewing man pages. It was chosen instead of the man package due
to superior internationalization capabilities. It supplies the man program.

• Man-pages

This package contains the actual contents of the basic Linux man pages.

• MPC

This package contains functions for the arithmetic of complex numbers. It is required by Gcc.

• MPFR

This package contains functions for multiple precision arithmetic. It is required by Gcc.

• Ncurses

This package contains libraries for terminal-independent handling of character screens. It is often used to provide
cursor control for a menuing system. It is needed by a number of packages in LFS.

• Patch

This package contains a program for modifying or creating files by applying a patch file typically created by the
diff program. It is needed by the build procedure for several LFS packages.

• Perl

This package is an interpreter for the runtime language PERL. It is needed for the installation and test suites of
several LFS packages.

• Pkg-config

This package provides a program to return meta-data about an installed library or package.

• Procps-NG

Linux From Scratch - Version 7.10

xv

This package contains programs for monitoring processes. These programs are useful for system administration,
and are also used by the LFS Bootscripts.

• Psmisc

This package contains programs for displaying information about running processes. These programs are useful for
system administration.

• Readline

This package is a set of libraries that offers command-line editing and history capabilities. It is used by Bash.

• Sed

This package allows editing of text without opening it in a text editor. It is also needed by most LFS packages'
configure scripts.

• Shadow

This package contains programs for handling passwords in a secure way.

• Sysklogd

This package contains programs for logging system messages, such as those given by the kernel or daemon
processes when unusual events occur.

• Sysvinit

This package provides the init program, which is the parent of all other processes on the Linux system.

• Tar

This package provides archiving and extraction capabilities of virtually all packages used in LFS.

• Tcl

This package contains the Tool Command Language used in many test suites in LFS packages. It is only installed
in the temporary toolchain.

• Texinfo

This package contains programs for reading, writing, and converting info pages. It is used in the installation
procedures of many LFS packages.

• Util-linux

This package contains miscellaneous utility programs. Among them are utilities for handling file systems,
consoles, partitions, and messages.

• Vim

This package contains an editor. It was chosen because of its compatibility with the classic vi editor and its huge
number of powerful capabilities. An editor is a very personal choice for many users and any other editor could be
substituted if desired.

• XML::Parser

This package is a Perl module that interfaces with Expat.

• XZ Utils

This package contains programs for compressing and decompressing files. It provides the highest compression
generally available and is useful for decompressing packages in XZ or LZMA format.

Linux From Scratch - Version 7.10

xvi

• Zlib

This package contains compression and decompression routines used by some programs.

Prerequisites
Building an LFS system is not a simple task. It requires a certain level of existing knowledge of Unix system
administration in order to resolve problems and correctly execute the commands listed. In particular, as an absolute
minimum, you should already have the ability to use the command line (shell) to copy or move files and directories, list
directory and file contents, and change the current directory. It is also expected that you have a reasonable knowledge
of using and installing Linux software.

Because the LFS book assumes at least this basic level of skill, the various LFS support forums are unlikely to be able
to provide you with much assistance in these areas. You will find that your questions regarding such basic knowledge
will likely go unanswered or you will simply be referred to the LFS essential pre-reading list.

Before building an LFS system, we recommend reading the following:

• Software-Building-HOWTO http://www.tldp.org/HOWTO/Software-Building-HOWTO.html

This is a comprehensive guide to building and installing “generic” Unix software packages under Linux. Although
it was written some time ago, it still provides a good summary of the basic techniques needed to build and install
software.

• Beginner's Guide to Installing from Source http://moi.vonos.net/linux/beginners-installing-from-source/

This guide provides a good summary of basic skills and techniques needed to build software from source code.

Typography
To make things easier to follow, there are a few typographical conventions used throughout this book. This section
contains some examples of the typographical format found throughout Linux From Scratch.

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is also used
in the explanation sections to identify which of the commands is being referenced.

In some cases, a logical line is extended to two or more physical lines with a backslash at the end of the line.

CC="gcc -B/usr/bin/" ../binutils-2.18/configure \
 --prefix=/tools --disable-nls --disable-werror

Note that the backslash must be followed by an immediate return. Other whitespace characters like spaces or tab
characters will create incorrect results.

install-info: unknown option '--dir-file=/mnt/lfs/usr/info/dir'

This form of text (fixed-width text) shows screen output, usually as the result of commands issued. This format is also
used to show filenames, such as /etc/ld.so.conf.

Emphasis

This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or items.

http://www.linuxfromscratch.org/

http://www.tldp.org/HOWTO/Software-Building-HOWTO.html
http://moi.vonos.net/linux/beginners-installing-from-source/
http://www.linuxfromscratch.org/

Linux From Scratch - Version 7.10

xvii

This format is used for hyperlinks both within the LFS community and to external pages. It includes HOWTOs,
download locations, and websites.

cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF

This format is used when creating configuration files. The first command tells the system to create the file $LFS/etc/
group from whatever is typed on the following lines until the sequence End Of File (EOF) is encountered. Therefore,
this entire section is generally typed as seen.

<REPLACED TEXT>

This format is used to encapsulate text that is not to be typed as seen or for copy-and-paste operations.

[OPTIONAL TEXT]

This format is used to encapsulate text that is optional.

passwd(5)

This format is used to refer to a specific manual (man) page. The number inside parentheses indicates a specific section
inside the manuals. For example, passwd has two man pages. Per LFS installation instructions, those two man pages
will be located at /usr/share/man/man1/passwd.1 and /usr/share/man/man5/passwd.5. When the
book uses passwd(5) it is specifically referring to /usr/share/man/man5/passwd.5. man passwd will print
the first man page it finds that matches “passwd”, which will be /usr/share/man/man1/passwd.1. For this
example, you will need to run man 5 passwd in order to read the specific page being referred to. It should be noted
that most man pages do not have duplicate page names in different sections. Therefore, man <program name> is
generally sufficient.

Structure
This book is divided into the following parts.

Part I - Introduction
Part I explains a few important notes on how to proceed with the LFS installation. This section also provides meta-
information about the book.

Part II - Preparing for the Build
Part II describes how to prepare for the building process—making a partition, downloading the packages, and compiling
temporary tools.

Part III - Building the LFS System
Part III guides the reader through the building of the LFS system—compiling and installing all the packages one by
one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on which other
software can be built to expand the system as desired. At the end of this book, there is an easy to use reference listing
all of the programs, libraries, and important files that have been installed.

Linux From Scratch - Version 7.10

xviii

Errata
The software used to create an LFS system is constantly being updated and enhanced. Security warnings and bug fixes
may become available after the LFS book has been released. To check whether the package versions or instructions in
this release of LFS need any modifications to accommodate security vulnerabilities or other bug fixes, please visit http://
www.linuxfromscratch.org/lfs/errata/7.10/ before proceeding with your build. You should note any changes shown and
apply them to the relevant section of the book as you progress with building the LFS system.

http://www.linuxfromscratch.org/lfs/errata/7.10/
http://www.linuxfromscratch.org/lfs/errata/7.10/

Linux From Scratch - Version 7.10

Part I. Introduction

Linux From Scratch - Version 7.10

2

Chapter 1. Introduction

1.1. How to Build an LFS System
The LFS system will be built by using an already installed Linux distribution (such as Debian, OpenMandriva, Fedora,
or openSUSE). This existing Linux system (the host) will be used as a starting point to provide necessary programs,
including a compiler, linker, and shell, to build the new system. Select the “development” option during the distribution
installation to be able to access these tools.

As an alternative to installing a separate distribution onto your machine, you may wish to use a LiveCD from a
commercial distribution.

Chapter 2 of this book describes how to create a new Linux native partition and file system. This is the place where the
new LFS system will be compiled and installed. Chapter 3 explains which packages and patches need to be downloaded
to build an LFS system and how to store them on the new file system. Chapter 4 discusses the setup of an appropriate
working environment. Please read Chapter 4 carefully as it explains several important issues you need be aware of
before beginning to work your way through Chapter 5 and beyond.

Chapter 5 explains the installation of a number of packages that will form the basic development suite (or toolchain)
which is used to build the actual system in Chapter 6. Some of these packages are needed to resolve circular
dependencies—for example, to compile a compiler, you need a compiler.

Chapter 5 also shows you how to build a first pass of the toolchain, including Binutils and GCC (first pass basically
means these two core packages will be reinstalled). The next step is to build Glibc, the C library. Glibc will be compiled
by the toolchain programs built in the first pass. Then, a second pass of the toolchain will be built. This time, the
toolchain will be dynamically linked against the newly built Glibc. The remaining Chapter 5 packages are built using
this second pass toolchain. When this is done, the LFS installation process will no longer depend on the host distribution,
with the exception of the running kernel.

This effort to isolate the new system from the host distribution may seem excessive. A full technical explanation as to
why this is done is provided in Section 5.2, “Toolchain Technical Notes”.

In Chapter 6, the full LFS system is built. The chroot (change root) program is used to enter a virtual environment and
start a new shell whose root directory will be set to the LFS partition. This is very similar to rebooting and instructing
the kernel to mount the LFS partition as the root partition. The system does not actually reboot, but instead uses chroot
because creating a bootable system requires additional work which is not necessary just yet. The major advantage is
that “chrooting” allows you to continue using the host system while LFS is being built. While waiting for package
compilations to complete, you can continue using your computer as normal.

To finish the installation, the basic system configuration is set up in Chapter 7, and the kernel and boot loader are set
up in Chapter 8. Chapter 9 contains information on continuing the LFS experience beyond this book. After the steps in
this book have been implemented, the computer will be ready to reboot into the new LFS system.

This is the process in a nutshell. Detailed information on each step is discussed in the following chapters and package
descriptions. Items that may seem complicated will be clarified, and everything will fall into place as you embark on
the LFS adventure.

1.2. What's new since the last release
Below is a list of package updates made since the previous release of the book.

Linux From Scratch - Version 7.10

3

Upgraded to:

•

• Binutils 2.27

• DejaGNU 1.6

• Diffutils 3.5

• Eudev 3.2

• E2fsprogs 1.43.1

• Expat-2.2.0

• File 5.28

• Flex 2.6.1

• GCC 6.2.0

• GDBM 1.12

• Gettext 0.19.8.1

• Glibc 2.24

• GMP 6.1.1

• Grep 2.25

• GRUB 2.02~beta3

• Gzip 1.8

• IPRoute2 4.7.0

• Kmod 23

• Linux 4.7.2

• Make 4.2.1

• Man-pages 4.07

• MPFR 3.1.4

• Perl 5.24.0

• Pkg-config 0.29.1

• Procps-ng 3.3.12

• Tar 1.29

• Tcl-core-8.6.6

• Tzdata 2016f

• Util-Linux 2.28.1

Added:

•

Linux From Scratch - Version 7.10

4

Removed:

•

• binutils-2.26-upstream_fix-2.patch

• mpfr-3.1.3-upstream_fixes-2.patch

1.3. Changelog
This is version 7.10 of the Linux From Scratch book, dated September 7, 2016. If this book is more than six months
old, a newer and better version is probably already available. To find out, please check one of the mirrors via http://
www.linuxfromscratch.org/mirrors.html.

Below is a list of changes made since the previous release of the book.

Changelog Entries:

• 2016-09-07

• [bdubbs] - Release LFS-7.10.

• 2016-08-22

• [bdubbs] - Release LFS-7.10-rc1.

• [bdubbs] - Update to linux-4.7.2. Fixes #3972.

• 2016-08-22

• [bdubbs] - Update to diffutils-3.5. Fixes #3968.

• [bdubbs] - Update to linux-4.7.1. Fixes #3969.

• [bdubbs] - Update to gcc-6.2.0. Fixes #3970.

• 2016-08-12

• [bdubbs] - Update to diffutils-3.4. Fixes #3964.

• [bdubbs] - Update to iproute2-4.7.0. Fixes #3965.

• [bdubbs] - Update to util-linux 2.28.1. Fixes #3966.

• 2016-08-06

• [bdubbs] - Update to binutils-2.27. Fixes #3962.

• 2016-08-05

• [bdubbs] - Update to grub-2.02~beta3. Fixes #3897.

• [bdubbs] - Update to glibc-2.24. Fixes #3963.

• 2016-07-29

• [bdubbs] - Update to linux-4.7. Fixes #3957.

• [bdubbs] - Update to flex-2.6.1. Fixes #3959.

• [bdubbs] - Update to tcl-core8.6.6. Fixes #3960.

• 2016-07-20

• [bdubbs] - Update to man-pages-4.07. Fixes #3956.

• [bdubbs] - Update to kmod-23. Fixes #3955.

http://www.linuxfromscratch.org/mirrors.html
http://www.linuxfromscratch.org/mirrors.html
http://wiki.linuxfromscratch.org/lfs/ticket/3972
http://wiki.linuxfromscratch.org/lfs/ticket/3968
http://wiki.linuxfromscratch.org/lfs/ticket/3969
http://wiki.linuxfromscratch.org/lfs/ticket/3970
http://wiki.linuxfromscratch.org/lfs/ticket/3964
http://wiki.linuxfromscratch.org/lfs/ticket/3965
http://wiki.linuxfromscratch.org/lfs/ticket/3966
http://wiki.linuxfromscratch.org/lfs/ticket/3962
http://wiki.linuxfromscratch.org/lfs/ticket/3897
http://wiki.linuxfromscratch.org/lfs/ticket/3963
http://wiki.linuxfromscratch.org/lfs/ticket/3957
http://wiki.linuxfromscratch.org/lfs/ticket/3959
http://wiki.linuxfromscratch.org/lfs/ticket/3960
http://wiki.linuxfromscratch.org/lfs/ticket/3956
http://wiki.linuxfromscratch.org/lfs/ticket/3955

Linux From Scratch - Version 7.10

5

• 2016-07-19

• [bdubbs] - Update to procps-ng-3.3.12. Fixes #3953.

• [bdubbs] - Update to linux-4.6.4. Fixes #3954.

• 2016-07-10

• [bdubbs] - Add discussion of Grub Bios Partition to Section 2.4 - Creating a New Partition.

• [bdubbs] - Update to tzdata-2016f. Fixes #3952.

• 2016-07-02

• [bdubbs] - Update to binutils-2.26.1. Fixes #3951.

• [bdubbs] - Update to linux-4.6.3. Fixes #3950.

• 2016-06-22

• [bdubbs] - Update to gmp-6.1.1. Fixes #3949.

• [bdubbs] - Update to expat-2.2.0. Fixes #3948.

• [bdubbs] - Update to tzdata-2016e. Fixes #3947.

• [bdubbs] - Update to file-5.28. Fixes #3946.

• [bdubbs] - Update to gettext-0.19.8.1. Fixes #3945.

• 2016-06-11

• [bdubbs] - Update to make-4.2.1. Fixes #3944.

• 2016-06-10

• [bdubbs] - Update to e2fsprogs-1.43.1. Fixes #3942.

• [bdubbs] - Update to linux-4.6.2. Fixes #3940.

• [bdubbs] - Update to gettext-0.19.8. Fixes #3943.

• [bdubbs] - Update to eudev-3.2. Fixes #3939.

• [bdubbs] - Add make-4.2-upstream_fixes-1.patch. Fixes #3941.

• 2016-05-27

• [bdubbs] - Update to e2fsprogs-1.43. Fixes #3935.

• [bdubbs] - Update to gdbm-1.12. Fixes #3933.

• [bdubbs] - Update to iproute2-4.6.0. Fixes #3934.

• [bdubbs] - Update to make-4.2. Fixes #3936.

• 2016-05-16

• [bdubbs] - Enhance the stripping commands at the end of Chapter 6.

• [bdubbs] - Made editorial changes to the kernel section.

• [bdubbs] - Moved Host System Requirements to Chapter 2 and made minor editorial changes.

• [bdubbs] - Updated to tar-1.29. Fixes #3932.

• [bdubbs] - Updated to linux-4.6. Fixes #3930.

• [bdubbs] - Updated to perl-5.24.0. Fixes #3931.

• 2016-05-15

http://wiki.linuxfromscratch.org/lfs/ticket/3953
http://wiki.linuxfromscratch.org/lfs/ticket/3954
http://wiki.linuxfromscratch.org/lfs/ticket/3952
http://wiki.linuxfromscratch.org/lfs/ticket/3951
http://wiki.linuxfromscratch.org/lfs/ticket/3950
http://wiki.linuxfromscratch.org/lfs/ticket/3949
http://wiki.linuxfromscratch.org/lfs/ticket/3948
http://wiki.linuxfromscratch.org/lfs/ticket/3947
http://wiki.linuxfromscratch.org/lfs/ticket/3946
http://wiki.linuxfromscratch.org/lfs/ticket/3945
http://wiki.linuxfromscratch.org/lfs/ticket/3944
http://wiki.linuxfromscratch.org/lfs/ticket/3942
http://wiki.linuxfromscratch.org/lfs/ticket/3940
http://wiki.linuxfromscratch.org/lfs/ticket/3943
http://wiki.linuxfromscratch.org/lfs/ticket/3939
http://wiki.linuxfromscratch.org/lfs/ticket/3941
http://wiki.linuxfromscratch.org/lfs/ticket/3935
http://wiki.linuxfromscratch.org/lfs/ticket/3933
http://wiki.linuxfromscratch.org/lfs/ticket/3934
http://wiki.linuxfromscratch.org/lfs/ticket/3936
http://wiki.linuxfromscratch.org/lfs/ticket/3932
http://wiki.linuxfromscratch.org/lfs/ticket/3930
http://wiki.linuxfromscratch.org/lfs/ticket/3931

Linux From Scratch - Version 7.10

6

• [bdubbs] - Updated to file-5.27. Fixes #3929.

• [bdubbs] - Updated to man-pages-4.06. Fixes #3928.

• [bdubbs] - Updated to linux-4.5.4. Fixes #3927.

• [bdubbs] - Updated to perl-5.22.2. Fixes #3926.

• 2016-05-03

• [ken] - Note that configure in texinfo-6.1 incorrectly complains about the --disable-static switch.

• 2016-04-28

• [krejzi] - Updated to file-5.26. Fixes #3919.

• [krejzi] - Updated to gcc-6.1.0. Fixes #3924.

• [krejzi] - Updated to grep-2.25. Fixes #3922.

• [krejzi] - Updated to gzip-1.8. Fixes #3923.

• [krejzi] - Updated to linux-4.5.2. Fixes #3921.

• [krejzi] - Updated to tzdata-2016d. Fixes #3920.

• [krejzi] - Updated binutils upstream fixes patch.

• [krejzi] - Added a patch for glibc which addresses a security issue and a build failure with GCC 6.

• 2016-04-16

• [bdubbs] - Update to dejagnu-1.6. Fixes #3918.

• [bdubbs] - Update to linux-4.5.1. Fixes #3917.

• [bdubbs] - Wording change in Chapter 6 GCC. Fixes #3915.

• 2016-04-12

• [bdubbs] - Update to util-linux-2.28. Fixes #3906.

• [bdubbs] - Simlify gzip instructions. Fixes #3914.

• 2016-04-07

• [bdubbs] - Add a caution in the gmp section about possible "Illegal Instruction" errors if the host is misidentified
or the libraries are copied to different systems.

• 2016-04-05

• [bdubbs] - Remove obsolete note about iconv() in Chapter 6 Glibc. Minor adjustments to text in the same
section. Fixes #3904.

• [bdubbs] - Add a note about UEFI and Secure Boot to Chapter 8 "Using GRUB to Set Up the Boot Process".
Fixes #3908.

• [bdubbs] - Add notes about paths for 64-bit systems in Chapter 6 "Adjusting the Toolchain". Fixes #3912.

• 2016-04-04

• [bdubbs] - Update to linux-4.5. Fixes #3903.

• [bdubbs] - Update to grep-2.24. Fixes #3905.

• [bdubbs] - Update to expat-2.1.1. Fixes #3907.

• [bdubbs] - Update to tzdata-2016c. Fixes #3909.

http://wiki.linuxfromscratch.org/lfs/ticket/3929
http://wiki.linuxfromscratch.org/lfs/ticket/3928
http://wiki.linuxfromscratch.org/lfs/ticket/3927
http://wiki.linuxfromscratch.org/lfs/ticket/3926
http://wiki.linuxfromscratch.org/lfs/ticket/3919
http://wiki.linuxfromscratch.org/lfs/ticket/3924
http://wiki.linuxfromscratch.org/lfs/ticket/3922
http://wiki.linuxfromscratch.org/lfs/ticket/3923
http://wiki.linuxfromscratch.org/lfs/ticket/3921
http://wiki.linuxfromscratch.org/lfs/ticket/3920
http://wiki.linuxfromscratch.org/lfs/ticket/3918
http://wiki.linuxfromscratch.org/lfs/ticket/3917
http://wiki.linuxfromscratch.org/lfs/ticket/3915
http://wiki.linuxfromscratch.org/lfs/ticket/3906
http://wiki.linuxfromscratch.org/lfs/ticket/3914
http://wiki.linuxfromscratch.org/lfs/ticket/3904
http://wiki.linuxfromscratch.org/lfs/ticket/3908
http://wiki.linuxfromscratch.org/lfs/ticket/3912
http://wiki.linuxfromscratch.org/lfs/ticket/3903
http://wiki.linuxfromscratch.org/lfs/ticket/3905
http://wiki.linuxfromscratch.org/lfs/ticket/3907
http://wiki.linuxfromscratch.org/lfs/ticket/3909

Linux From Scratch - Version 7.10

7

• [bdubbs] - Update to iproute2-4.5.0. Fixes #3910.

• [bdubbs] - Update to man-pages-4.05. Fixes #3911.

• [bdubbs] - Update to gzip-1.7. Fixes #3913.

• 2016-03-13

• [Chris] - Updated dependencies - Gawk can use GMP, MPFR, Readline.

• 2016-03-09

• [bdubbs] - Update to mpfr-3.1.4. Fixes #3902.

• [bdubbs] - Update to linux-4.4.4. Fixes #3893.

• [bdubbs] - Update to pkg-config-0.29.1. Fixes #3901.

• [bdubbs] - Update to tcl-6.8.5. Fixes #3898.

• [bdubbs] - Remove --disable-profile from Glibc instructions. Fixes #3895.

• [bdubbs] - Create /var/log/faillog. Fixes #3899.

• [bdubbs] - Remove --enable-obsolete-rpc from Chapter 5 glibc. Fixes #3900.

• 2016-03-08

• [bdubbs] - LFS-7.9 released.

1.4. Resources

1.4.1. FAQ
If during the building of the LFS system you encounter any errors, have any questions, or think there is a typo in the
book, please start by consulting the Frequently Asked Questions (FAQ) that is located at http://www.linuxfromscratch.
org/faq/.

1.4.2. Mailing Lists
The linuxfromscratch.org server hosts a number of mailing lists used for the development of the LFS project.
These lists include the main development and support lists, among others. If the FAQ does not solve the problem you
are having, the next step would be to search the mailing lists at http://www.linuxfromscratch.org/search.html.

For information on the different lists, how to subscribe, archive locations, and additional information, visit http://www.
linuxfromscratch.org/mail.html.

1.4.3. IRC
Several members of the LFS community offer assistance on Internet Relay Chat (IRC). Before using this support, please
make sure that your question is not already answered in the LFS FAQ or the mailing list archives. You can find the
IRC network at irc.freenode.net. The support channel is named #LFS-support.

1.4.4. Mirror Sites
The LFS project has a number of world-wide mirrors to make accessing the website and downloading the required
packages more convenient. Please visit the LFS website at http://www.linuxfromscratch.org/mirrors.html for a list of
current mirrors.

http://wiki.linuxfromscratch.org/lfs/ticket/3910
http://wiki.linuxfromscratch.org/lfs/ticket/3911
http://wiki.linuxfromscratch.org/lfs/ticket/3913
http://wiki.linuxfromscratch.org/lfs/ticket/3902
http://wiki.linuxfromscratch.org/lfs/ticket/3893
http://wiki.linuxfromscratch.org/lfs/ticket/3901
http://wiki.linuxfromscratch.org/lfs/ticket/3898
http://wiki.linuxfromscratch.org/lfs/ticket/3895
http://wiki.linuxfromscratch.org/lfs/ticket/3899
http://wiki.linuxfromscratch.org/lfs/ticket/3900
http://www.linuxfromscratch.org/faq/
http://www.linuxfromscratch.org/faq/
http://www.linuxfromscratch.org/search.html
http://www.linuxfromscratch.org/mail.html
http://www.linuxfromscratch.org/mail.html
http://www.linuxfromscratch.org/mirrors.html

Linux From Scratch - Version 7.10

8

1.4.5. Contact Information

Please direct all your questions and comments to one of the LFS mailing lists (see above).

1.5. Help
If an issue or a question is encountered while working through this book, please check the FAQ page at http://www.
linuxfromscratch.org/faq/#generalfaq. Questions are often already answered there. If your question is not answered on
this page, try to find the source of the problem. The following hint will give you some guidance for troubleshooting:
http://www.linuxfromscratch.org/hints/downloads/files/errors.txt.

If you cannot find your problem listed in the FAQ, search the mailing lists at http://www.linuxfromscratch.org/search.
html.

We also have a wonderful LFS community that is willing to offer assistance through the mailing lists and IRC (see
the Section 1.4, “Resources” section of this book). However, we get several support questions every day and many
of them can be easily answered by going to the FAQ and by searching the mailing lists first. So, for us to offer the
best assistance possible, you need to do some research on your own first. That allows us to focus on the more unusual
support needs. If your searches do not produce a solution, please include all relevant information (mentioned below)
in your request for help.

1.5.1. Things to Mention

Apart from a brief explanation of the problem being experienced, the essential things to include in any request for
help are:

• The version of the book being used (in this case 7.10)

• The host distribution and version being used to create LFS

• The output from the Host System Requirements script

• The package or section the problem was encountered in

• The exact error message or symptom being received

• Note whether you have deviated from the book at all

Note

Deviating from this book does not mean that we will not help you. After all, LFS is about personal preference.
Being upfront about any changes to the established procedure helps us evaluate and determine possible causes
of your problem.

1.5.2. Configure Script Problems

If something goes wrong while running the configure script, review the config.log file. This file may contain errors
encountered during configure which were not printed to the screen. Include the relevant lines if you need to ask for help.

http://www.linuxfromscratch.org/faq/#generalfaq
http://www.linuxfromscratch.org/faq/#generalfaq
http://www.linuxfromscratch.org/hints/downloads/files/errors.txt
http://www.linuxfromscratch.org/search.html
http://www.linuxfromscratch.org/search.html

Linux From Scratch - Version 7.10

9

1.5.3. Compilation Problems
Both the screen output and the contents of various files are useful in determining the cause of compilation problems.
The screen output from the configure script and the make run can be helpful. It is not necessary to include the entire
output, but do include enough of the relevant information. Below is an example of the type of information to include
from the screen output from make:

gcc -DALIASPATH=\"/mnt/lfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/lfs/usr/share/locale\"
-DLIBDIR=\"/mnt/lfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/lfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/lfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/lfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/lfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2

In this case, many people would just include the bottom section:

make [2]: *** [make] Error 1

This is not enough information to properly diagnose the problem because it only notes that something went wrong, not
what went wrong. The entire section, as in the example above, is what should be saved because it includes the command
that was executed and the associated error message(s).

An excellent article about asking for help on the Internet is available online at http://catb.org/~esr/faqs/smart-questions.
html. Read and follow the hints in this document to increase the likelihood of getting the help you need.

http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html

Linux From Scratch - Version 7.10

Part II. Preparing for the Build

Linux From Scratch - Version 7.10

11

Chapter 2. Preparing the Host System

2.1. Introduction
In this chapter, the host tools needed for building LFS are checked and, if necessary, installed. Then a partition which
will host the LFS system is prepared. We will create the partition itself, create a file system on it, and mount it.

2.2. Host System Requirements
Your host system should have the following software with the minimum versions indicated. This should not be an
issue for most modern Linux distributions. Also note that many distributions will place software headers into separate
packages, often in the form of “<package-name>-devel” or “<package-name>-dev”. Be sure to install those if your
distribution provides them.

Earlier versions of the listed software packages may work, but have not been tested.

• Bash-3.2 (/bin/sh should be a symbolic or hard link to bash)
• Binutils-2.17 (Versions greater than 2.27 are not recommended as they have not been tested)
• Bison-2.3 (/usr/bin/yacc should be a link to bison or small script that executes bison)
• Bzip2-1.0.4
• Coreutils-6.9
• Diffutils-2.8.1
• Findutils-4.2.31
• Gawk-4.0.1 (/usr/bin/awk should be a link to gawk)
• GCC-4.7 including the C++ compiler, g++ (Versions greater than 6.2.0 are not recommended as they have not

been tested)

Note

On some distributions, there have been reports that some libraries used by gcc can be in an inconsistent
state and that this interferes with building some LFS packages. To check this, look in /usr/lib and
possibly /usr/lib64 for libgmp.la, libmpfr.la, and libmpc.la. Either all three should be present or absent,
but not only one or two. If the problem exists on your system, either rename or delete the .la files or
install the appropriate missing package.

• Glibc-2.11 (Versions greater than 2.24 are not recommended as they have not been tested)
• Grep-2.5.1a
• Gzip-1.3.12
• Linux Kernel-2.6.32

The reason for the kernel version requirement is that we specify that version when building glibc in Chapter 6 at
the recommendation of the developers. It is also required by udev.

If the host kernel is earlier than 2.6.32 you will need to replace the kernel with a more up to date version. There
are two ways you can go about this. First, see if your Linux vendor provides a 2.6.32 or later kernel package. If so,
you may wish to install it. If your vendor doesn't offer an acceptable kernel package, or you would prefer not to
install it, you can compile a kernel yourself. Instructions for compiling the kernel and configuring the boot loader
(assuming the host uses GRUB) are located in Chapter 8.

Linux From Scratch - Version 7.10

12

• M4-1.4.10
• Make-3.81
• Patch-2.5.4
• Perl-5.8.8
• Sed-4.1.5
• Tar-1.22
• Texinfo-4.7
• Xz-5.0.0

Important

Note that the symlinks mentioned above are required to build an LFS system using the instructions contained
within this book. Symlinks that point to other software (such as dash, mawk, etc.) may work, but are not
tested or supported by the LFS development team, and may require either deviation from the instructions or
additional patches to some packages.

Linux From Scratch - Version 7.10

13

To see whether your host system has all the appropriate versions, and the ability to compile programs, run the following:

cat > version-check.sh << "EOF"
#!/bin/bash
Simple script to list version numbers of critical development tools
export LC_ALL=C
bash --version | head -n1 | cut -d" " -f2-4
MYSH=$(readlink -f /bin/sh)
echo "/bin/sh -> $MYSH"
echo $MYSH | grep -q bash || echo "ERROR: /bin/sh does not point to bash"
unset MYSH

echo -n "Binutils: "; ld --version | head -n1 | cut -d" " -f3-
bison --version | head -n1

if [-h /usr/bin/yacc]; then
 echo "/usr/bin/yacc -> `readlink -f /usr/bin/yacc`";
elif [-x /usr/bin/yacc]; then
 echo yacc is `/usr/bin/yacc --version | head -n1`
else
 echo "yacc not found"
fi

bzip2 --version 2>&1 < /dev/null | head -n1 | cut -d" " -f1,6-
echo -n "Coreutils: "; chown --version | head -n1 | cut -d")" -f2
diff --version | head -n1
find --version | head -n1
gawk --version | head -n1

if [-h /usr/bin/awk]; then
 echo "/usr/bin/awk -> `readlink -f /usr/bin/awk`";
elif [-x /usr/bin/awk]; then
 echo awk is `/usr/bin/awk --version | head -n1`
else
 echo "awk not found"
fi

Linux From Scratch - Version 7.10

14

gcc --version | head -n1
g++ --version | head -n1
ldd --version | head -n1 | cut -d" " -f2- # glibc version
grep --version | head -n1
gzip --version | head -n1
cat /proc/version
m4 --version | head -n1
make --version | head -n1
patch --version | head -n1
echo Perl `perl -V:version`
sed --version | head -n1
tar --version | head -n1
makeinfo --version | head -n1
xz --version | head -n1

Linux From Scratch - Version 7.10

15

echo 'int main(){}' > dummy.c && g++ -o dummy dummy.c
if [-x dummy]
 then echo "g++ compilation OK";
 else echo "g++ compilation failed"; fi
rm -f dummy.c dummy
EOF

bash version-check.sh

Also check for some library consistency:

cat > library-check.sh << "EOF"
#!/bin/bash
for lib in lib{gmp,mpfr,mpc}.la; do
 echo $lib: $(if find /usr/lib* -name $lib|
 grep -q $lib;then :;else echo not;fi) found
done
unset lib
EOF

bash library-check.sh

The files identified by this script should be all present or all absent, but not only one or two present.

2.3. Building LFS in Stages
LFS is designed to be built in one session. That is, the instructions assume that the system will not be shut down during
the process. That does not mean that the system has to be done in one sitting. The issue is that certain procedures have
to be re-accomplished after a reboot if resuming LFS at different points.

2.3.1. Chapters 1-4
These chapters are accomplished on the host system. When restarting, be careful of the following:

• Procedures done as the root user after Section 2.4 need to have the LFS environment variable set FOR THE ROOT
USER.

2.3.2. Chapter 5
• The /mnt/lfs partition must be mounted.

• ALL instructions in Chapter 5 must be done by user lfs. A su - lfs needs to be done before any task in Chapter 5.

• The procedures in Section 5.3, “General Compilation Instructions” are critical. If there is any doubt about
installing a package, ensure any previously expanded tarballs are removed, re-extract the package files, and
complete all instructions in that section.

2.3.3. Chapters 6-8
• The /mnt/lfs partition must be mounted.

Linux From Scratch - Version 7.10

16

• When entering chroot, the LFS environment variable must be set for root. The LFS variable is not used otherwise.

• The virtual file systems must be mounted. This can be done before or after entering chroot by changing to a
host virtual terminal and, as root, running the commands in Section 6.2.2, “Mounting and Populating /dev” and
Section 6.2.3, “Mounting Virtual Kernel File Systems”.

2.4. Creating a New Partition
Like most other operating systems, LFS is usually installed on a dedicated partition. The recommended approach to
building an LFS system is to use an available empty partition or, if you have enough unpartitioned space, to create one.

A minimal system requires a partition of around 6 gigabytes (GB). This is enough to store all the source tarballs and
compile the packages. However, if the LFS system is intended to be the primary Linux system, additional software will
probably be installed which will require additional space. A 20 GB partition is a reasonable size to provide for growth.
The LFS system itself will not take up this much room. A large portion of this requirement is to provide sufficient free
temporary storage as well as for adding additional capabilities after LFS is complete. Additionally, compiling packages
can require a lot of disk space which will be reclaimed after the package is installed.

Because there is not always enough Random Access Memory (RAM) available for compilation processes, it is a good
idea to use a small disk partition as swap space. This is used by the kernel to store seldom-used data and leave more
memory available for active processes. The swap partition for an LFS system can be the same as the one used by the
host system, in which case it is not necessary to create another one.

Start a disk partitioning program such as cfdisk or fdisk with a command line option naming the hard disk on which
the new partition will be created—for example /dev/sda for the primary Integrated Drive Electronics (IDE) disk.
Create a Linux native partition and a swap partition, if needed. Please refer to cfdisk(8) or fdisk(8) if you do
not yet know how to use the programs.

Note

For experienced users, other partitioning schemes are possible. The new LFS system can be on a software
RAID array or an LVM logical volume. However, some of these options require an initramfs, which is an
advanced topic. These partitioning methodologies are not recommended for first time LFS users.

Remember the designation of the new partition (e.g., sda5). This book will refer to this as the LFS partition. Also
remember the designation of the swap partition. These names will be needed later for the /etc/fstab file.

2.4.1. Other Partition Issues

Requests for advice on system partitioning are often posted on the LFS mailing lists. This is a highly subjective topic.
The default for most distributions is to use the entire drive with the exception of one small swap partition. This is not
optimal for LFS for several reasons. It reduces flexibility, makes sharing of data across multiple distributions or LFS
builds more difficult, makes backups more time consuming, and can waste disk space through inefficient allocation
of file system structures.

2.4.1.1. The Root Partition

A root LFS partition (not to be confused with the /root directory) of ten gigabytes is a good compromise for most
systems. It provides enough space to build LFS and most of BLFS, but is small enough so that multiple partitions can
be easily created for experimentation.

http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/raid.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/aboutlvm.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/initramfs.html

Linux From Scratch - Version 7.10

17

2.4.1.2. The Swap Partition

Most distributions automatically create a swap partition. Generally the recommended size of the swap partition is about
twice the amount of physical RAM, however this is rarely needed. If disk space is limited, hold the swap partition to
two gigabytes and monitor the amount of disk swapping.

Swapping is never good. Generally you can tell if a system is swapping by just listening to disk activity and observing
how the system reacts to commands. The first reaction to swapping should be to check for an unreasonable command
such as trying to edit a five gigabyte file. If swapping becomes a normal occurrence, the best solution is to purchase
more RAM for your system.

2.4.1.3. The Grub Bios Partition

If the boot disk has been partitioned with a GUID Partition Table (GPT), then a small, typically 1 MB, partition must
be created if it does not already exist. This partition is not formatted, but must be available for GRUB to use during
installation of the boot loader. This partition will normally be labeled 'BIOS Boot' if using fdisk or have a code of
EF02 if using gdisk.

Note

The Grub Bios partition must be on the drive that the BIOS uses to boot the system. This is not necessarily
the same drive where the LFS root partition is located. Disks on a system may use different partition table
types. The requirment for this partition depends only on the partition table type of the boot disk.

2.4.1.4. Convenience Partitions

There are several other partitions that are not required, but should be considered when designing a disk layout. The
following list is not comprehensive, but is meant as a guide.

• /boot – Highly recommended. Use this partition to store kernels and other booting information. To minimize
potential boot problems with larger disks, make this the first physical partition on your first disk drive. A partition
size of 100 megabytes is quite adequate.

• /home – Highly recommended. Share your home directory and user customization across multiple distributions or
LFS builds. The size is generally fairly large and depends on available disk space.

• /usr – A separate /usr partition is generally used if providing a server for a thin client or diskless workstation. It is
normally not needed for LFS. A size of five gigabytes will handle most installations.

• /opt – This directory is most useful for BLFS where multiple installations of large packages like Gnome or KDE
can be installed without embedding the files in the /usr hierarchy. If used, 5 to 10 gigabytes is generally adequate.

• /tmp – A separate /tmp directory is rare, but useful if configuring a thin client. This partition, if used, will usually
not need to exceed a couple of gigabytes.

• /usr/src – This partition is very useful for providing a location to store BLFS source files and share them across
LFS builds. It can also be used as a location for building BLFS packages. A reasonably large partition of 30-50
gigabytes allows plenty of room.

Any separate partition that you want automatically mounted upon boot needs to be specified in the /etc/fstab.
Details about how to specify partitions will be discussed in Section 8.2, “Creating the /etc/fstab File”.

Linux From Scratch - Version 7.10

18

2.5. Creating a File System on the Partition
Now that a blank partition has been set up, the file system can be created. LFS can use any file system recognized by
the Linux kernel, but the most common types are ext3 and ext4. The choice of file system can be complex and depends
on the characteristics of the files and the size of the partition. For example:

ext2
is suitable for small partitions that are updated infrequently such as /boot.

ext3
is an upgrade to ext2 that includes a journal to help recover the partition's status in the case of an unclean shutdown.
It is commonly used as a general purpose file system.

ext4
is the latest version of the ext file system family of partition types. It provides several new capabilities including
nano-second timestamps, creation and use of very large files (16 TB), and speed improvements.

Other file systems, including FAT32, NTFS, ReiserFS, JFS, and XFS are useful for specialized purposes. More
information about these file systems can be found at http://en.wikipedia.org/wiki/Comparison_of_file_systems.

LFS assumes that the root file system (/) is of type ext4. To create an ext4 file system on the LFS partition, run the
following:

mkfs -v -t ext4 /dev/<xxx>

If you are using an existing swap partition, there is no need to format it. If a new swap partition was created, it
will need to be initialized with this command:

mkswap /dev/<yyy>

Replace <yyy> with the name of the swap partition.

2.6. Setting The $LFS Variable
Throughout this book, the environment variable LFS will be used several times. You should ensure that this variable
is always defined throughout the LFS build process. It should be set to the name of the directory where you will be
building your LFS system - we will use /mnt/lfs as an example, but the directory choice is up to you. If you are
building LFS on a separate partition, this directory will be the mount point for the partition. Choose a directory location
and set the variable with the following command:

export LFS=/mnt/lfs

Having this variable set is beneficial in that commands such as mkdir -v $LFS/tools can be typed literally. The shell will
automatically replace “$LFS” with “/mnt/lfs” (or whatever the variable was set to) when it processes the command line.

Caution

Do not forget to check that LFS is set whenever you leave and reenter the current working environment (such
as when doing a su to root or another user). Check that the LFS variable is set up properly with:

echo $LFS

Make sure the output shows the path to your LFS system's build location, which is /mnt/lfs if the provided
example was followed. If the output is incorrect, use the command given earlier on this page to set $LFS
to the correct directory name.

http://en.wikipedia.org/wiki/Comparison_of_file_systems

Linux From Scratch - Version 7.10

19

Note

One way to ensure that the LFS variable is always set is to edit the .bash_profile file in both your
personal home directory and in /root/.bash_profile and enter the export command above. In addition,
the shell specified in the /etc/passwd file for all users that need the LFS variable needs to be bash to
ensure that the /root/.bash_profile file is incorporated as a part of the login process.

2.7. Mounting the New Partition
Now that a file system has been created, the partition needs to be made accessible. In order to do this, the partition needs
to be mounted at a chosen mount point. For the purposes of this book, it is assumed that the file system is mounted
under the directory specified by the LFS environment variable as described in the previous section.

Create the mount point and mount the LFS file system by running:

mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS

Replace <xxx> with the designation of the LFS partition.

If using multiple partitions for LFS (e.g., one for / and another for /usr), mount them using:

mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS
mkdir -v $LFS/usr
mount -v -t ext4 /dev/<yyy> $LFS/usr

Replace <xxx> and <yyy> with the appropriate partition names.

Ensure that this new partition is not mounted with permissions that are too restrictive (such as the nosuid or nodev
options). Run the mount command without any parameters to see what options are set for the mounted LFS partition.
If nosuid and/or nodev are set, the partition will need to be remounted.

If you are using a swap partition, ensure that it is enabled using the swapon command:

/sbin/swapon -v /dev/<zzz>

Replace <zzz> with the name of the swap partition.

Now that there is an established place to work, it is time to download the packages.

Linux From Scratch - Version 7.10

20

Chapter 3. Packages and Patches

3.1. Introduction
This chapter includes a list of packages that need to be downloaded in order to build a basic Linux system. The listed
version numbers correspond to versions of the software that are known to work, and this book is based on their use.
We highly recommend against using newer versions because the build commands for one version may not work with a
newer version. The newest package versions may also have problems that require work-arounds. These work-arounds
will be developed and stabilized in the development version of the book.

Download locations may not always be accessible. If a download location has changed since this book was
published, Google (http://www.google.com/) provides a useful search engine for most packages. If this search is
unsuccessful, try one of the alternative means of downloading discussed at http://www.linuxfromscratch.org/lfs/
packages.html#packages.

Downloaded packages and patches will need to be stored somewhere that is conveniently available throughout the entire
build. A working directory is also required to unpack the sources and build them. $LFS/sources can be used both
as the place to store the tarballs and patches and as a working directory. By using this directory, the required elements
will be located on the LFS partition and will be available during all stages of the building process.

To create this directory, execute the following command, as user root, before starting the download session:

mkdir -v $LFS/sources

Make this directory writable and sticky. “Sticky” means that even if multiple users have write permission on a directory,
only the owner of a file can delete the file within a sticky directory. The following command will enable the write
and sticky modes:

chmod -v a+wt $LFS/sources

An easy way to download all of the packages and patches is by using wget-list as an input to wget. For example:

wget --input-file=wget-list --continue --directory-prefix=$LFS/sources

Additionally, starting with LFS-7.0, there is a separate file, md5sums, which can be used to verify that all the correct
packages are available before proceeding. Place that file in $LFS/sources and run:

pushd $LFS/sources
md5sum -c md5sums
popd

3.2. All Packages
Download or otherwise obtain the following packages:

• Acl (2.2.52) - 380 KB:
Download: http://download.savannah.gnu.org/releases/acl/acl-2.2.52.src.tar.gz
MD5 sum: a61415312426e9c2212bd7dc7929abda

• Attr (2.4.47) - 336 KB:
Home page: http://savannah.nongnu.org/projects/attr
Download: http://download.savannah.gnu.org/releases/attr/attr-2.4.47.src.tar.gz
MD5 sum: 84f58dec00b60f2dc8fd1c9709291cc7

http://www.google.com/
http://www.linuxfromscratch.org/lfs/packages.html#packages
http://www.linuxfromscratch.org/lfs/packages.html#packages
../wget-list
../md5sums
http://download.savannah.gnu.org/releases/acl/acl-2.2.52.src.tar.gz
http://savannah.nongnu.org/projects/attr
http://download.savannah.gnu.org/releases/attr/attr-2.4.47.src.tar.gz

Linux From Scratch - Version 7.10

21

• Autoconf (2.69) - 1,186 KB:
Home page: http://www.gnu.org/software/autoconf/
Download: http://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.xz
MD5 sum: 50f97f4159805e374639a73e2636f22e

• Automake (1.15) - 1,462 KB:
Home page: http://www.gnu.org/software/automake/
Download: http://ftp.gnu.org/gnu/automake/automake-1.15.tar.xz
MD5 sum: 9a1ddb0e053474d9d1105cfe39b0c48d

• Bash (4.3.30) - 7,7791 KB:
Home page: http://www.gnu.org/software/bash/
Download: http://ftp.gnu.org/gnu/bash/bash-4.3.30.tar.gz
MD5 sum: a27b3ee9be83bd3ba448c0ff52b28447

• Bc (1.06.95) - 288 KB:
Home page: http://www.gnu.org/software/bc/
Download: http://alpha.gnu.org/gnu/bc/bc-1.06.95.tar.bz2
MD5 sum: 5126a721b73f97d715bb72c13c889035

• Binutils (2.27) - 25,488 KB:
Home page: http://www.gnu.org/software/binutils/
Download: http://ftp.gnu.org/gnu/binutils/binutils-2.27.tar.bz2
MD5 sum: 2869c9bf3e60ee97c74ac2a6bf4e9d68

• Bison (3.0.4) - 1,928 KB:
Home page: http://www.gnu.org/software/bison/
Download: http://ftp.gnu.org/gnu/bison/bison-3.0.4.tar.xz
MD5 sum: c342201de104cc9ce0a21e0ad10d4021

• Bzip2 (1.0.6) - 764 KB:
Home page: http://www.bzip.org/
Download: http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
MD5 sum: 00b516f4704d4a7cb50a1d97e6e8e15b

• Check (0.10.0) - 752 KB:
Home page: https://libcheck.github.io/check
Download: http://sourceforge.net/projects/check/files/check/0.10.0/check-0.10.0.tar.gz
MD5 sum: 53c5e5c77d090e103a17f3ed7fd7d8b8

• Coreutils (8.25) - 5,591 KB:
Home page: http://www.gnu.org/software/coreutils/
Download: http://ftp.gnu.org/gnu/coreutils/coreutils-8.25.tar.xz
MD5 sum: 070e43ba7f618d747414ef56ab248a48

• DejaGNU (1.6) - 512 KB:
Home page: http://www.gnu.org/software/dejagnu/
Download: http://ftp.gnu.org/gnu/dejagnu/dejagnu-1.6.tar.gz
MD5 sum: 1fdc2eb0d592c4f89d82d24dfdf02f0b

http://www.gnu.org/software/autoconf/
http://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.xz
http://www.gnu.org/software/automake/
http://ftp.gnu.org/gnu/automake/automake-1.15.tar.xz
http://www.gnu.org/software/bash/
http://ftp.gnu.org/gnu/bash/bash-4.3.30.tar.gz
http://www.gnu.org/software/bc/
http://alpha.gnu.org/gnu/bc/bc-1.06.95.tar.bz2
http://www.gnu.org/software/binutils/
http://ftp.gnu.org/gnu/binutils/binutils-2.27.tar.bz2
http://www.gnu.org/software/bison/
http://ftp.gnu.org/gnu/bison/bison-3.0.4.tar.xz
http://www.bzip.org/
http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
https://libcheck.github.io/check
http://sourceforge.net/projects/check/files/check/0.10.0/check-0.10.0.tar.gz
http://www.gnu.org/software/coreutils/
http://ftp.gnu.org/gnu/coreutils/coreutils-8.25.tar.xz
http://www.gnu.org/software/dejagnu/
http://ftp.gnu.org/gnu/dejagnu/dejagnu-1.6.tar.gz

Linux From Scratch - Version 7.10

22

• Diffutils (3.5) - 1,330 KB:
Home page: http://www.gnu.org/software/diffutils/
Download: http://ftp.gnu.org/gnu/diffutils/diffutils-3.5.tar.xz
MD5 sum: 569354697ff1cfc9a9de3781361015fa

• Eudev (3.2) - 1,744 KB:
Download: http://dev.gentoo.org/~blueness/eudev/eudev-3.2.tar.gz
MD5 sum: 7e42d9b9ed8162021665139520676367

• E2fsprogs (1.43.1) - 6,846 KB:
Home page: http://e2fsprogs.sourceforge.net/
Download: http://downloads.sourceforge.net/project/e2fsprogs/e2fsprogs/v1.43.1/e2fsprogs-1.43.1.tar.gz
MD5 sum: 1775f3f0eed9dee1c5f39e08d1964a97

• Expat (2.2.0) - 405 KB:
Home page: http://expat.sourceforge.net/
Download: http://prdownloads.sourceforge.net/expat/expat-2.2.0.tar.bz2
MD5 sum: 2f47841c829facb346eb6e3fab5212e2

• Expect (5.45) - 614 KB:
Home page: http://expect.sourceforge.net/
Download: http://prdownloads.sourceforge.net/expect/expect5.45.tar.gz
MD5 sum: 44e1a4f4c877e9ddc5a542dfa7ecc92b

• File (5.28) - 760 KB:
Home page: http://www.darwinsys.com/file/
Download: ftp://ftp.astron.com/pub/file/file-5.28.tar.gz
MD5 sum: 3f7771424aa855f32094b49571e19b33

Note
File (5.28) may no longer be available at the listed location. The site administrators of the master download
location occasionally remove older versions when new ones are released. An alternative download location
that may have the correct version available can also be found at: http://www.linuxfromscratch.org/lfs/
download.html#ftp.

• Findutils (4.6.0) - 3,692 KB:
Home page: http://www.gnu.org/software/findutils/
Download: http://ftp.gnu.org/gnu/findutils/findutils-4.6.0.tar.gz
MD5 sum: 9936aa8009438ce185bea2694a997fc1

• Flex (2.6.1) - 816 KB:
Home page: http://flex.sourceforge.net
Download: https://github.com/westes/flex/releases/download/v2.6.1/flex-2.6.1.tar.xz
MD5 sum: cd3c86290fc2676a641aefafeb10848a

• Gawk (4.1.3) - 2,258 KB:
Home page: http://www.gnu.org/software/gawk/
Download: http://ftp.gnu.org/gnu/gawk/gawk-4.1.3.tar.xz
MD5 sum: 97f8f44149ea9b9e94be97f68988be87

http://www.gnu.org/software/diffutils/
http://ftp.gnu.org/gnu/diffutils/diffutils-3.5.tar.xz
http://dev.gentoo.org/~blueness/eudev/eudev-3.2.tar.gz
http://e2fsprogs.sourceforge.net/
http://downloads.sourceforge.net/project/e2fsprogs/e2fsprogs/v1.43.1/e2fsprogs-1.43.1.tar.gz
http://expat.sourceforge.net/
http://prdownloads.sourceforge.net/expat/expat-2.2.0.tar.bz2
http://expect.sourceforge.net/
http://prdownloads.sourceforge.net/expect/expect5.45.tar.gz
http://www.darwinsys.com/file/
ftp://ftp.astron.com/pub/file/file-5.28.tar.gz
http://www.linuxfromscratch.org/lfs/download.html#ftp
http://www.linuxfromscratch.org/lfs/download.html#ftp
http://www.gnu.org/software/findutils/
http://ftp.gnu.org/gnu/findutils/findutils-4.6.0.tar.gz
http://flex.sourceforge.net
https://github.com/westes/flex/releases/download/v2.6.1/flex-2.6.1.tar.xz
http://www.gnu.org/software/gawk/
http://ftp.gnu.org/gnu/gawk/gawk-4.1.3.tar.xz

Linux From Scratch - Version 7.10

23

• GCC (6.2.0) - 97,441 KB:
Home page: http://gcc.gnu.org/
Download: http://ftp.gnu.org/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.bz2
MD5 sum: 9768625159663b300ae4de2f4745fcc4

• GDBM (1.12) - 822 KB:
Home page: http://www.gnu.org/software/gdbm/
Download: http://ftp.gnu.org/gnu/gdbm/gdbm-1.12.tar.gz
MD5 sum: 9ce96ff4c99e74295ea19040931c8fb9

• Gettext (0.19.8.1) - 7,041 KB:
Home page: http://www.gnu.org/software/gettext/
Download: http://ftp.gnu.org/gnu/gettext/gettext-0.19.8.1.tar.xz
MD5 sum: df3f5690eaa30fd228537b00cb7b7590

• Glibc (2.24) - 13,237 KB:
Home page: http://www.gnu.org/software/libc/
Download: http://ftp.gnu.org/gnu/glibc/glibc-2.24.tar.xz
MD5 sum: 97dc5517f92016f3d70d83e3162ad318

• GMP (6.1.1) - 1,898 KB:
Home page: http://www.gnu.org/software/gmp/
Download: http://ftp.gnu.org/gnu/gmp/gmp-6.1.1.tar.xz
MD5 sum: e70e183609244a332d80529e7e155a35

• Gperf (3.0.4) - 960 KB:
Home page: http://www.gnu.org/software/gperf/
Download: http://ftp.gnu.org/gnu/gperf/gperf-3.0.4.tar.gz
MD5 sum: c1f1db32fb6598d6a93e6e88796a8632

• Grep (2.25) - 1,300 KB:
Home page: http://www.gnu.org/software/grep/
Download: http://ftp.gnu.org/gnu/grep/grep-2.25.tar.xz
MD5 sum: 04e96b0e6f0fe6a180ae62c88fcd0af6

• Groff (1.22.3) - 4,091 KB:
Home page: http://www.gnu.org/software/groff/
Download: http://ftp.gnu.org/gnu/groff/groff-1.22.3.tar.gz
MD5 sum: cc825fa64bc7306a885f2fb2268d3ec5

• GRUB (2.02~beta3) - 5,890 KB:
Home page: http://www.gnu.org/software/grub/
Download: http://alpha.gnu.org/gnu/grub/grub-2.02~beta3.tar.xz
MD5 sum: ab399fc6f74a97d66ff77f04b743149c

• Gzip (1.8) - 712 KB:
Home page: http://www.gnu.org/software/gzip/
Download: http://ftp.gnu.org/gnu/gzip/gzip-1.8.tar.xz
MD5 sum: f7caabb65cddc1a4165b398009bd05b9

http://gcc.gnu.org/
http://ftp.gnu.org/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.bz2
http://www.gnu.org/software/gdbm/
http://ftp.gnu.org/gnu/gdbm/gdbm-1.12.tar.gz
http://www.gnu.org/software/gettext/
http://ftp.gnu.org/gnu/gettext/gettext-0.19.8.1.tar.xz
http://www.gnu.org/software/libc/
http://ftp.gnu.org/gnu/glibc/glibc-2.24.tar.xz
http://www.gnu.org/software/gmp/
http://ftp.gnu.org/gnu/gmp/gmp-6.1.1.tar.xz
http://www.gnu.org/software/gperf/
http://ftp.gnu.org/gnu/gperf/gperf-3.0.4.tar.gz
http://www.gnu.org/software/grep/
http://ftp.gnu.org/gnu/grep/grep-2.25.tar.xz
http://www.gnu.org/software/groff/
http://ftp.gnu.org/gnu/groff/groff-1.22.3.tar.gz
http://www.gnu.org/software/grub/
http://alpha.gnu.org/gnu/grub/grub-2.02~beta3.tar.xz
http://www.gnu.org/software/gzip/
http://ftp.gnu.org/gnu/gzip/gzip-1.8.tar.xz

Linux From Scratch - Version 7.10

24

• Iana-Etc (2.30) - 201 KB:
Home page: http://freecode.com/projects/iana-etc
Download: http://anduin.linuxfromscratch.org/LFS/iana-etc-2.30.tar.bz2
MD5 sum: 3ba3afb1d1b261383d247f46cb135ee8

• Inetutils (1.9.4) - 1,333 KB:
Home page: http://www.gnu.org/software/inetutils/
Download: http://ftp.gnu.org/gnu/inetutils/inetutils-1.9.4.tar.xz
MD5 sum: 87fef1fa3f603aef11c41dcc097af75e

• Intltool (0.51.0) - 159 KB:
Home page: http://freedesktop.org/wiki/Software/intltool
Download: http://launchpad.net/intltool/trunk/0.51.0/+download/intltool-0.51.0.tar.gz
MD5 sum: 12e517cac2b57a0121cda351570f1e63

• IPRoute2 (4.7.0) - 577 KB:
Home page: https://www.kernel.org/pub/linux/utils/net/iproute2/
Download: https://www.kernel.org/pub/linux/utils/net/iproute2/iproute2-4.7.0.tar.xz
MD5 sum: d4b205830cdc2702f8a0cbd6232129cd

• Kbd (2.0.3) - 1,013 KB:
Home page: http://ftp.altlinux.org/pub/people/legion/kbd
Download: https://www.kernel.org/pub/linux/utils/kbd/kbd-2.0.3.tar.xz
MD5 sum: 231b46e7142eb41ea3ae06d2ded3c208

• Kmod (23) - 440 KB:
Download: https://www.kernel.org/pub/linux/utils/kernel/kmod/kmod-23.tar.xz
MD5 sum: 3cf469f40ec2ed51f56ba45ea03793e7

• Less (481) - 310 KB:
Home page: http://www.greenwoodsoftware.com/less/
Download: http://www.greenwoodsoftware.com/less/less-481.tar.gz
MD5 sum: 50ef46065c65257141a7340123527767

• LFS-Bootscripts (20150222) - 31 KB:
Download: http://www.linuxfromscratch.org/lfs/downloads/7.10/lfs-bootscripts-20150222.tar.bz2
MD5 sum: d4c219f80adf3c93265f409ef9966e3d

• Libcap (2.25) - 64 KB:
Home page: https://sites.google.com/site/fullycapable/
Download: https://www.kernel.org/pub/linux/libs/security/linux-privs/libcap2/libcap-2.25.tar.xz
MD5 sum: 6666b839e5d46c2ad33fc8aa2ceb5f77

• Libpipeline (1.4.1) - 787 KB:
Home page: http://libpipeline.nongnu.org/
Download: http://download.savannah.gnu.org/releases/libpipeline/libpipeline-1.4.1.tar.gz
MD5 sum: e54590ec68d6c1239f67b5b44e92022c

• Libtool (2.4.6) - 951 KB:
Home page: http://www.gnu.org/software/libtool/
Download: http://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.xz
MD5 sum: 1bfb9b923f2c1339b4d2ce1807064aa5

http://freecode.com/projects/iana-etc
http://anduin.linuxfromscratch.org/LFS/iana-etc-2.30.tar.bz2
http://www.gnu.org/software/inetutils/
http://ftp.gnu.org/gnu/inetutils/inetutils-1.9.4.tar.xz
http://freedesktop.org/wiki/Software/intltool
http://launchpad.net/intltool/trunk/0.51.0/+download/intltool-0.51.0.tar.gz
https://www.kernel.org/pub/linux/utils/net/iproute2/
https://www.kernel.org/pub/linux/utils/net/iproute2/iproute2-4.7.0.tar.xz
http://ftp.altlinux.org/pub/people/legion/kbd
https://www.kernel.org/pub/linux/utils/kbd/kbd-2.0.3.tar.xz
https://www.kernel.org/pub/linux/utils/kernel/kmod/kmod-23.tar.xz
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/less-481.tar.gz
http://www.linuxfromscratch.org/lfs/downloads/7.10/lfs-bootscripts-20150222.tar.bz2
https://sites.google.com/site/fullycapable/
https://www.kernel.org/pub/linux/libs/security/linux-privs/libcap2/libcap-2.25.tar.xz
http://libpipeline.nongnu.org/
http://download.savannah.gnu.org/releases/libpipeline/libpipeline-1.4.1.tar.gz
http://www.gnu.org/software/libtool/
http://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.xz

Linux From Scratch - Version 7.10

25

• Linux (4.7.2) - 88,290 KB:
Home page: http://www.kernel.org/
Download: https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.7.2.tar.xz
MD5 sum: ae493473d074185205a54bc8ad49c3b4

Note
The Linux kernel is updated relatively often, many times due to discoveries of security vulnerabilities. The
latest available 4.7.x kernel version should be used, unless the errata page says otherwise.
For users with limited speed or expensive bandwidth who wish to update the Linux kernel, a baseline
version of the package and patches can be downloaded separately. This may save some time or cost for a
subsequent patch level upgrade within a minor release.

• M4 (1.4.17) - 1,122 KB:
Home page: http://www.gnu.org/software/m4/
Download: http://ftp.gnu.org/gnu/m4/m4-1.4.17.tar.xz
MD5 sum: 12a3c829301a4fd6586a57d3fcf196dc

• Make (4.2.1) - 1,375 KB:
Home page: http://www.gnu.org/software/make/
Download: http://ftp.gnu.org/gnu/make/make-4.2.1.tar.bz2
MD5 sum: 15b012617e7c44c0ed482721629577ac

• Man-DB (2.7.5) - 1,471 KB:
Home page: http://www.nongnu.org/man-db/
Download: http://download.savannah.gnu.org/releases/man-db/man-db-2.7.5.tar.xz
MD5 sum: 37da0bb0400cc7b640f33c26f6052202

• Man-pages (4.07) - 1,445 KB:
Home page: http://www.kernel.org/doc/man-pages/
Download: https://www.kernel.org/pub/linux/docs/man-pages/man-pages-4.07.tar.xz
MD5 sum: 6d6c59b83431852ba44930785def30d4

• MPC (1.0.3) - 655 KB:
Home page: http://www.multiprecision.org/
Download: http://www.multiprecision.org/mpc/download/mpc-1.0.3.tar.gz
MD5 sum: d6a1d5f8ddea3abd2cc3e98f58352d26

• MPFR (3.1.4) - 1,096 KB:
Home page: http://www.mpfr.org/
Download: http://www.mpfr.org/mpfr-3.1.4/mpfr-3.1.4.tar.xz
MD5 sum: 064b2c18185038e404a401b830d59be8

• Ncurses (6.0) - 3,059 KB:
Home page: http://www.gnu.org/software/ncurses/
Download: http://ftp.gnu.org/gnu//ncurses/ncurses-6.0.tar.gz
MD5 sum: ee13d052e1ead260d7c28071f46eefb1

• Patch (2.7.5) - 711 KB:
Home page: http://savannah.gnu.org/projects/patch/
Download: http://ftp.gnu.org/gnu/patch/patch-2.7.5.tar.xz
MD5 sum: e3da7940431633fb65a01b91d3b7a27a

http://www.kernel.org/
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.7.2.tar.xz
http://www.gnu.org/software/m4/
http://ftp.gnu.org/gnu/m4/m4-1.4.17.tar.xz
http://www.gnu.org/software/make/
http://ftp.gnu.org/gnu/make/make-4.2.1.tar.bz2
http://www.nongnu.org/man-db/
http://download.savannah.gnu.org/releases/man-db/man-db-2.7.5.tar.xz
http://www.kernel.org/doc/man-pages/
https://www.kernel.org/pub/linux/docs/man-pages/man-pages-4.07.tar.xz
http://www.multiprecision.org/
http://www.multiprecision.org/mpc/download/mpc-1.0.3.tar.gz
http://www.mpfr.org/
http://www.mpfr.org/mpfr-3.1.4/mpfr-3.1.4.tar.xz
http://www.gnu.org/software/ncurses/
http://ftp.gnu.org/gnu//ncurses/ncurses-6.0.tar.gz
http://savannah.gnu.org/projects/patch/
http://ftp.gnu.org/gnu/patch/patch-2.7.5.tar.xz

Linux From Scratch - Version 7.10

26

• Perl (5.24.0) - 13,825 KB:
Home page: http://www.perl.org/
Download: http://www.cpan.org/src/5.0/perl-5.24.0.tar.bz2
MD5 sum: 99f39abe614b50719d9915431e54fc1e

• Pkg-config (0.29.1) - 1,967 KB:
Home page: http://www.freedesktop.org/wiki/Software/pkg-config
Download: https://pkg-config.freedesktop.org/releases/pkg-config-0.29.1.tar.gz
MD5 sum: f739a28cae4e0ca291f82d1d41ef107d

• Procps (3.3.12) - 826 KB:
Home page: http://sourceforge.net/projects/procps-ng
Download: http://sourceforge.net/projects/procps-ng/files/Production/procps-ng-3.3.12.tar.xz
MD5 sum: 957e42e8b193490b2111252e4a2b443c

• Psmisc (22.21) - 447 KB:
Home page: http://psmisc.sourceforge.net/
Download: http://downloads.sourceforge.net/project/psmisc/psmisc/psmisc-22.21.tar.gz
MD5 sum: 935c0fd6eb208288262b385fa656f1bf

• Readline (6.3) - 2,411 KB:
Home page: http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
Download: http://ftp.gnu.org/gnu/readline/readline-6.3.tar.gz
MD5 sum: 33c8fb279e981274f485fd91da77e94a

• Sed (4.2.2) - 1,035 KB:
Home page: http://www.gnu.org/software/sed/
Download: http://ftp.gnu.org/gnu/sed/sed-4.2.2.tar.bz2
MD5 sum: 7ffe1c7cdc3233e1e0c4b502df253974

• Shadow (4.2.1) - 1,558 KB:
Download: http://pkg-shadow.alioth.debian.org/releases/shadow-4.2.1.tar.xz
MD5 sum: 2bfafe7d4962682d31b5eba65dba4fc8

• Sysklogd (1.5.1) - 88 KB:
Home page: http://www.infodrom.org/projects/sysklogd/
Download: http://www.infodrom.org/projects/sysklogd/download/sysklogd-1.5.1.tar.gz
MD5 sum: c70599ab0d037fde724f7210c2c8d7f8

• Sysvinit (2.88dsf) - 108 KB:
Home page: http://savannah.nongnu.org/projects/sysvinit
Download: http://download.savannah.gnu.org/releases/sysvinit/sysvinit-2.88dsf.tar.bz2
MD5 sum: 6eda8a97b86e0a6f59dabbf25202aa6f

• Tar (1.29) - 1,950 KB:
Home page: http://www.gnu.org/software/tar/
Download: http://ftp.gnu.org/gnu/tar/tar-1.29.tar.xz
MD5 sum: a1802fec550baaeecff6c381629653ef

• Tcl (8.6.6) - 5,731 KB:
Home page: http://tcl.sourceforge.net/
Download: http://sourceforge.net/projects/tcl/files/Tcl/8.6.6/tcl-core8.6.6-src.tar.gz
MD5 sum: 98ebf13bbd90257e006c219369dd5f67

http://www.perl.org/
http://www.cpan.org/src/5.0/perl-5.24.0.tar.bz2
http://www.freedesktop.org/wiki/Software/pkg-config
https://pkg-config.freedesktop.org/releases/pkg-config-0.29.1.tar.gz
http://sourceforge.net/projects/procps-ng
http://sourceforge.net/projects/procps-ng/files/Production/procps-ng-3.3.12.tar.xz
http://psmisc.sourceforge.net/
http://downloads.sourceforge.net/project/psmisc/psmisc/psmisc-22.21.tar.gz
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
http://ftp.gnu.org/gnu/readline/readline-6.3.tar.gz
http://www.gnu.org/software/sed/
http://ftp.gnu.org/gnu/sed/sed-4.2.2.tar.bz2
http://pkg-shadow.alioth.debian.org/releases/shadow-4.2.1.tar.xz
http://www.infodrom.org/projects/sysklogd/
http://www.infodrom.org/projects/sysklogd/download/sysklogd-1.5.1.tar.gz
http://savannah.nongnu.org/projects/sysvinit
http://download.savannah.gnu.org/releases/sysvinit/sysvinit-2.88dsf.tar.bz2
http://www.gnu.org/software/tar/
http://ftp.gnu.org/gnu/tar/tar-1.29.tar.xz
http://tcl.sourceforge.net/
http://sourceforge.net/projects/tcl/files/Tcl/8.6.6/tcl-core8.6.6-src.tar.gz

Linux From Scratch - Version 7.10

27

• Texinfo (6.1) - 4,416 KB:
Home page: http://www.gnu.org/software/texinfo/
Download: http://ftp.gnu.org/gnu/texinfo/texinfo-6.1.tar.xz
MD5 sum: 1d7ec1888fae00730693597852b00cde

• Time Zone Data (2016f) - 306 KB:
Home page: http://www.iana.org/time-zones
Download: http://www.iana.org/time-zones/repository/releases/tzdata2016f.tar.gz
MD5 sum: b20b3c1618db1984aac685e763de001d

• Udev-lfs Tarball (udev-lfs-20140408) - 11 KB:
Download: http://anduin.linuxfromscratch.org/LFS/udev-lfs-20140408.tar.bz2
MD5 sum: c2d6b127f89261513b23b6d458484099

• Util-linux (2.28.1) - 4,061 KB:
Home page: http://freecode.com/projects/util-linux
Download: https://www.kernel.org/pub/linux/utils/util-linux/v2.28/util-linux-2.28.1.tar.xz
MD5 sum: e2d863efaf4fd330a42c5efe9f1b02b4

• Vim (7.4) - 9,632 KB:
Home page: http://www.vim.org
Download: ftp://ftp.vim.org/pub/vim/unix/vim-7.4.tar.bz2
MD5 sum: 607e135c559be642f210094ad023dc65

• XML::Parser (2.44) - 232 KB:
Home page: https://github.com/chorny/XML-Parser
Download: http://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.44.tar.gz
MD5 sum: af4813fe3952362451201ced6fbce379

• Xz Utils (5.2.2) - 993 KB:
Home page: http://tukaani.org/xz
Download: http://tukaani.org/xz/xz-5.2.2.tar.xz
MD5 sum: e26772b69940085c0632589ab1d52e64

• Zlib (1.2.8) - 441 KB:
Home page: http://www.zlib.net/
Download: http://www.zlib.net/zlib-1.2.8.tar.xz
MD5 sum: 28f1205d8dd2001f26fec1e8c2cebe37

Total size of these packages: about 414 MB

3.3. Needed Patches
In addition to the packages, several patches are also required. These patches correct any mistakes in the packages that
should be fixed by the maintainer. The patches also make small modifications to make the packages easier to work
with. The following patches will be needed to build an LFS system:

• Bash Upstream Fixes Patch - 15 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/bash-4.3.30-upstream_fixes-3.patch
MD5 sum: e183ab08f0a51a7c5a2e974eb1ecbc46

http://www.gnu.org/software/texinfo/
http://ftp.gnu.org/gnu/texinfo/texinfo-6.1.tar.xz
http://www.iana.org/time-zones
http://www.iana.org/time-zones/repository/releases/tzdata2016f.tar.gz
http://anduin.linuxfromscratch.org/LFS/udev-lfs-20140408.tar.bz2
http://freecode.com/projects/util-linux
https://www.kernel.org/pub/linux/utils/util-linux/v2.28/util-linux-2.28.1.tar.xz
http://www.vim.org
ftp://ftp.vim.org/pub/vim/unix/vim-7.4.tar.bz2
https://github.com/chorny/XML-Parser
http://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.44.tar.gz
http://tukaani.org/xz
http://tukaani.org/xz/xz-5.2.2.tar.xz
http://www.zlib.net/
http://www.zlib.net/zlib-1.2.8.tar.xz
http://www.linuxfromscratch.org/patches/lfs/7.10/bash-4.3.30-upstream_fixes-3.patch

Linux From Scratch - Version 7.10

28

• Bc Memory Leak Patch - 1.4 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/bc-1.06.95-memory_leak-1.patch
MD5 sum: 877e81fba316fe487ec23501059d54b8

• Bzip2 Documentation Patch - 1.6 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/bzip2-1.0.6-install_docs-1.patch
MD5 sum: 6a5ac7e89b791aae556de0f745916f7f

• Coreutils Internationalization Fixes Patch - 146 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/coreutils-8.25-i18n-2.patch
MD5 sum: c6334ed5b03062ef7e9649e8ceb2cfc1

• Glibc FHS Patch - 2.8 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/glibc-2.24-fhs-1.patch
MD5 sum: 9a5997c3452909b1769918c759eff8a2

• Kbd Backspace/Delete Fix Patch - 12 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/kbd-2.0.3-backspace-1.patch
MD5 sum: f75cca16a38da6caa7d52151f7136895

• Readline Upstream Fixes Patch - 8 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/readline-6.3-upstream_fixes-3.patch
MD5 sum: 6b0d9f4e79319d56a7fee9b35e5cfd1b

• Sysvinit Consolidated Patch - 3.9 KB:
Download: http://www.linuxfromscratch.org/patches/lfs/7.10/sysvinit-2.88dsf-consolidated-1.patch
MD5 sum: 0b7b5ea568a878fdcc4057b2bf36e5cb

Total size of these patches: about 190.7 KB

In addition to the above required patches, there exist a number of optional patches created by the LFS community. These
optional patches solve minor problems or enable functionality that is not enabled by default. Feel free to peruse the
patches database located at http://www.linuxfromscratch.org/patches/downloads/ and acquire any additional patches
to suit your system needs.

http://www.linuxfromscratch.org/patches/lfs/7.10/bc-1.06.95-memory_leak-1.patch
http://www.linuxfromscratch.org/patches/lfs/7.10/bzip2-1.0.6-install_docs-1.patch
http://www.linuxfromscratch.org/patches/lfs/7.10/coreutils-8.25-i18n-2.patch
http://www.linuxfromscratch.org/patches/lfs/7.10/glibc-2.24-fhs-1.patch
http://www.linuxfromscratch.org/patches/lfs/7.10/kbd-2.0.3-backspace-1.patch
http://www.linuxfromscratch.org/patches/lfs/7.10/readline-6.3-upstream_fixes-3.patch
http://www.linuxfromscratch.org/patches/lfs/7.10/sysvinit-2.88dsf-consolidated-1.patch
http://www.linuxfromscratch.org/patches/downloads/

Linux From Scratch - Version 7.10

29

Chapter 4. Final Preparations

4.1. Introduction
In this chapter, we will perform a few additional tasks to prepare for building the temporary system. We will create
a directory in $LFS for the installation of the temporary tools, add an unprivileged user to reduce risk, and create an
appropriate build environment for that user. We will also explain the unit of time we use to measure how long LFS
packages take to build, or “SBUs”, and give some information about package test suites.

4.2. Creating the $LFS/tools Directory
All programs compiled in Chapter 5 will be installed under $LFS/tools to keep them separate from the programs
compiled in Chapter 6. The programs compiled here are temporary tools and will not be a part of the final LFS system.
By keeping these programs in a separate directory, they can easily be discarded later after their use. This also prevents
these programs from ending up in the host production directories (easy to do by accident in Chapter 5).

Create the required directory by running the following as root:

mkdir -v $LFS/tools

The next step is to create a /tools symlink on the host system. This will point to the newly-created directory on the
LFS partition. Run this command as root as well:

ln -sv $LFS/tools /

Note

The above command is correct. The ln command has a few syntactic variations, so be sure to check info
coreutils ln and ln(1) before reporting what you may think is an error.

The created symlink enables the toolchain to be compiled so that it always refers to /tools, meaning that the compiler,
assembler, and linker will work both in Chapter 5 (when we are still using some tools from the host) and in the next
(when we are “chrooted” to the LFS partition).

4.3. Adding the LFS User
When logged in as user root, making a single mistake can damage or destroy a system. Therefore, we recommend
building the packages in this chapter as an unprivileged user. You could use your own user name, but to make it easier
to set up a clean working environment, create a new user called lfs as a member of a new group (also named lfs)
and use this user during the installation process. As root, issue the following commands to add the new user:

groupadd lfs
useradd -s /bin/bash -g lfs -m -k /dev/null lfs

The meaning of the command line options:

-s /bin/bash

This makes bash the default shell for user lfs.

Linux From Scratch - Version 7.10

30

-g lfs

This option adds user lfs to group lfs.

-m

This creates a home directory for lfs.

-k /dev/null

This parameter prevents possible copying of files from a skeleton directory (default is /etc/skel) by changing
the input location to the special null device.

lfs

This is the actual name for the created group and user.

To log in as lfs (as opposed to switching to user lfs when logged in as root, which does not require the lfs user
to have a password), give lfs a password:

passwd lfs

Grant lfs full access to $LFS/tools by making lfs the directory owner:

chown -v lfs $LFS/tools

If a separate working directory was created as suggested, give user lfs ownership of this directory:

chown -v lfs $LFS/sources

Next, login as user lfs. This can be done via a virtual console, through a display manager, or with the following
substitute user command:

su - lfs

The “-” instructs su to start a login shell as opposed to a non-login shell. The difference between these two types of
shells can be found in detail in bash(1) and info bash.

4.4. Setting Up the Environment
Set up a good working environment by creating two new startup files for the bash shell. While logged in as user lfs,
issue the following command to create a new .bash_profile:

cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF

When logged on as user lfs, the initial shell is usually a login shell which reads the /etc/profile of the host
(probably containing some settings and environment variables) and then .bash_profile. The exec env -i.../bin/
bash command in the .bash_profile file replaces the running shell with a new one with a completely empty
environment, except for the HOME, TERM, and PS1 variables. This ensures that no unwanted and potentially hazardous
environment variables from the host system leak into the build environment. The technique used here achieves the goal
of ensuring a clean environment.

Linux From Scratch - Version 7.10

31

The new instance of the shell is a non-login shell, which does not read the /etc/profile or .bash_profile
files, but rather reads the .bashrc file instead. Create the .bashrc file now:

cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
LFS_TGT=$(uname -m)-lfs-linux-gnu
PATH=/tools/bin:/bin:/usr/bin
export LFS LC_ALL LFS_TGT PATH
EOF

The set +h command turns off bash's hash function. Hashing is ordinarily a useful feature—bash uses a hash table to
remember the full path of executable files to avoid searching the PATH time and again to find the same executable.
However, the new tools should be used as soon as they are installed. By switching off the hash function, the shell will
always search the PATH when a program is to be run. As such, the shell will find the newly compiled tools in $LFS/
tools as soon as they are available without remembering a previous version of the same program in a different location.

Setting the user file-creation mask (umask) to 022 ensures that newly created files and directories are only writable by
their owner, but are readable and executable by anyone (assuming default modes are used by the open(2) system
call, new files will end up with permission mode 644 and directories with mode 755).

The LFS variable should be set to the chosen mount point.

The LC_ALL variable controls the localization of certain programs, making their messages follow the conventions of
a specified country. Setting LC_ALL to “POSIX” or “C” (the two are equivalent) ensures that everything will work
as expected in the chroot environment.

The LFS_TGT variable sets a non-default, but compatible machine description for use when building our cross compiler
and linker and when cross compiling our temporary toolchain. More information is contained in Section 5.2, “Toolchain
Technical Notes”.

By putting /tools/bin ahead of the standard PATH, all the programs installed in Chapter 5 are picked up by the
shell immediately after their installation. This, combined with turning off hashing, limits the risk that old programs are
used from the host when the same programs are available in the chapter 5 environment.

Finally, to have the environment fully prepared for building the temporary tools, source the just-created user profile:

source ~/.bash_profile

4.5. About SBUs
Many people would like to know beforehand approximately how long it takes to compile and install each package.
Because Linux From Scratch can be built on many different systems, it is impossible to provide accurate time estimates.
The biggest package (Glibc) will take approximately 20 minutes on the fastest systems, but could take up to three days
on slower systems! Instead of providing actual times, the Standard Build Unit (SBU) measure will be used instead.

The SBU measure works as follows. The first package to be compiled from this book is Binutils in Chapter 5. The time
it takes to compile this package is what will be referred to as the Standard Build Unit or SBU. All other compile times
will be expressed relative to this time.

Linux From Scratch - Version 7.10

32

For example, consider a package whose compilation time is 4.5 SBUs. This means that if a system took 10 minutes
to compile and install the first pass of Binutils, it will take approximately 45 minutes to build this example package.
Fortunately, most build times are shorter than the one for Binutils.

In general, SBUs are not entirely accurate because they depend on many factors, including the host system's version of
GCC. They are provided here to give an estimate of how long it might take to install a package, but the numbers can
vary by as much as dozens of minutes in some cases.

Note

For many modern systems with multiple processors (or cores) the compilation time for a package can be
reduced by performing a "parallel make" by either setting an environment variable or telling the make
program how many processors are available. For instance, a Core2Duo can support two simultaneous
processes with:

export MAKEFLAGS='-j 2'

or just building with:

make -j2

When multiple processors are used in this way, the SBU units in the book will vary even more than they
normally would. In some cases, the make step will simply fail. Analyzing the output of the build process will
also be more difficult because the lines of different processes will be interleaved. If you run into a problem
with a build step, revert back to a single processor build to properly analyze the error messages.

4.6. About the Test Suites
Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can provide
a “sanity check” indicating that everything compiled correctly. A test suite that passes its set of checks usually proves
that the package is functioning as the developer intended. It does not, however, guarantee that the package is totally
bug free.

Some test suites are more important than others. For example, the test suites for the core toolchain packages—GCC,
Binutils, and Glibc—are of the utmost importance due to their central role in a properly functioning system. The test
suites for GCC and Glibc can take a very long time to complete, especially on slower hardware, but are strongly
recommended.

Note

Experience has shown that there is little to be gained from running the test suites in Chapter 5. There can
be no escaping the fact that the host system always exerts some influence on the tests in that chapter, often
causing inexplicable failures. Because the tools built in Chapter 5 are temporary and eventually discarded,
we do not recommend running the test suites in Chapter 5 for the average reader. The instructions for running
those test suites are provided for the benefit of testers and developers, but they are strictly optional.

A common issue with running the test suites for Binutils and GCC is running out of pseudo terminals (PTYs). This
can result in a high number of failing tests. This may happen for several reasons, but the most likely cause is that the
host system does not have the devpts file system set up correctly. This issue is discussed in greater detail at http://
www.linuxfromscratch.org/lfs/faq.html#no-ptys.

http://www.linuxfromscratch.org/lfs/faq.html#no-ptys
http://www.linuxfromscratch.org/lfs/faq.html#no-ptys

Linux From Scratch - Version 7.10

33

Sometimes package test suites will fail, but for reasons which the developers are aware of and have deemed non-critical.
Consult the logs located at http://www.linuxfromscratch.org/lfs/build-logs/7.10/ to verify whether or not these failures
are expected. This site is valid for all tests throughout this book.

http://www.linuxfromscratch.org/lfs/build-logs/7.10/

Linux From Scratch - Version 7.10

34

Chapter 5. Constructing a Temporary System

5.1. Introduction
This chapter shows how to build a minimal Linux system. This system will contain just enough tools to start constructing
the final LFS system in Chapter 6 and allow a working environment with more user convenience than a minimum
environment would.

There are two steps in building this minimal system. The first step is to build a new and host-independent toolchain
(compiler, assembler, linker, libraries, and a few useful utilities). The second step uses this toolchain to build the other
essential tools.

The files compiled in this chapter will be installed under the $LFS/tools directory to keep them separate from the
files installed in the next chapter and the host production directories. Since the packages compiled here are temporary,
we do not want them to pollute the soon-to-be LFS system.

5.2. Toolchain Technical Notes
This section explains some of the rationale and technical details behind the overall build method. It is not essential to
immediately understand everything in this section. Most of this information will be clearer after performing an actual
build. This section can be referred to at any time during the process.

The overall goal of Chapter 5 is to produce a temporary area that contains a known-good set of tools that can be
isolated from the host system. By using chroot, the commands in the remaining chapters will be contained within that
environment, ensuring a clean, trouble-free build of the target LFS system. The build process has been designed to
minimize the risks for new readers and to provide the most educational value at the same time.

Note

Before continuing, be aware of the name of the working platform, often referred to as the target triplet. A
simple way to determine the name of the target triplet is to run the config.guess script that comes with the
source for many packages. Unpack the Binutils sources and run the script: ./config.guess and note the
output. For example, for a 32-bit Intel processor the output will be i686-pc-linux-gnu. On a 64-bit system it
will be x86_64-pc-linux-gnu.

Also be aware of the name of the platform's dynamic linker, often referred to as the dynamic loader (not to be
confused with the standard linker ld that is part of Binutils). The dynamic linker provided by Glibc finds and
loads the shared libraries needed by a program, prepares the program to run, and then runs it. The name of
the dynamic linker for a 32-bit Intel machine will be ld-linux.so.2 (ld-linux-x86-64.so.2 for
64-bit systems). A sure-fire way to determine the name of the dynamic linker is to inspect a random binary
from the host system by running: readelf -l <name of binary> | grep interpreter and
noting the output. The authoritative reference covering all platforms is in the shlib-versions file in the
root of the Glibc source tree.

Some key technical points of how the Chapter 5 build method works:

• Slightly adjusting the name of the working platform, by changing the "vendor" field target triplet by way of the
LFS_TGT variable, ensures that the first build of Binutils and GCC produces a compatible cross-linker and cross-
compiler. Instead of producing binaries for another architecture, the cross-linker and cross-compiler will produce
binaries compatible with the current hardware.

Linux From Scratch - Version 7.10

35

• The temporary libraries are cross-compiled. Because a cross-compiler by its nature cannot rely on anything from
its host system, this method removes potential contamination of the target system by lessening the chance of
headers or libraries from the host being incorporated into the new tools. Cross-compilation also allows for the
possibility of building both 32-bit and 64-bit libraries on 64-bit capable hardware.

• Careful manipulation of the GCC source tells the compiler which target dynamic linker will be used.

Binutils is installed first because the configure runs of both GCC and Glibc perform various feature tests on the
assembler and linker to determine which software features to enable or disable. This is more important than one might
first realize. An incorrectly configured GCC or Glibc can result in a subtly broken toolchain, where the impact of such
breakage might not show up until near the end of the build of an entire distribution. A test suite failure will usually
highlight this error before too much additional work is performed.

Binutils installs its assembler and linker in two locations, /tools/bin and /tools/$LFS_TGT/bin. The tools in
one location are hard linked to the other. An important facet of the linker is its library search order. Detailed information
can be obtained from ld by passing it the --verbose flag. For example, an ld --verbose | grep SEARCH
will illustrate the current search paths and their order. It shows which files are linked by ld by compiling a dummy
program and passing the --verbose switch to the linker. For example, gcc dummy.c -Wl,--verbose 2>&1
| grep succeeded will show all the files successfully opened during the linking.

The next package installed is GCC. An example of what can be seen during its run of configure is:

checking what assembler to use... /tools/i686-lfs-linux-gnu/bin/as
checking what linker to use... /tools/i686-lfs-linux-gnu/bin/ld

This is important for the reasons mentioned above. It also demonstrates that GCC's configure script does not search the
PATH directories to find which tools to use. However, during the actual operation of gcc itself, the same search paths
are not necessarily used. To find out which standard linker gcc will use, run: gcc -print-prog-name=ld.

Detailed information can be obtained from gcc by passing it the -v command line option while compiling a dummy
program. For example, gcc -v dummy.c will show detailed information about the preprocessor, compilation, and
assembly stages, including gcc's included search paths and their order.

Next installed are sanitized Linux API headers. These allow the standard C library (Glibc) to interface with features
that the Linux kernel will provide.

The next package installed is Glibc. The most important considerations for building Glibc are the compiler, binary
tools, and kernel headers. The compiler is generally not an issue since Glibc will always use the compiler relating to
the --host parameter passed to its configure script; e.g. in our case, the compiler will be i686-lfs-linux-gnu-gcc. The
binary tools and kernel headers can be a bit more complicated. Therefore, take no risks and use the available configure
switches to enforce the correct selections. After the run of configure, check the contents of the config.make file
in the glibc-build directory for all important details. Note the use of CC="i686-lfs-gnu-gcc" to control
which binary tools are used and the use of the -nostdinc and -isystem flags to control the compiler's include
search path. These items highlight an important aspect of the Glibc package—it is very self-sufficient in terms of its
build machinery and generally does not rely on toolchain defaults.

During the second pass of Binutils, we are able to utilize the --with-lib-path configure switch to control ld's
library search path.

For the second pass of GCC, its sources also need to be modified to tell GCC to use the new dynamic linker. Failure to
do so will result in the GCC programs themselves having the name of the dynamic linker from the host system's /lib
directory embedded into them, which would defeat the goal of getting away from the host. From this point onwards,
the core toolchain is self-contained and self-hosted. The remainder of the Chapter 5 packages all build against the new
Glibc in /tools.

Linux From Scratch - Version 7.10

36

Upon entering the chroot environment in Chapter 6, the first major package to be installed is Glibc, due to its self-
sufficient nature mentioned above. Once this Glibc is installed into /usr, we will perform a quick changeover of the
toolchain defaults, and then proceed in building the rest of the target LFS system.

5.3. General Compilation Instructions
When building packages there are several assumptions made within the instructions:

• Several of the packages are patched before compilation, but only when the patch is needed to circumvent a
problem. A patch is often needed in both this and the next chapter, but sometimes in only one or the other.
Therefore, do not be concerned if instructions for a downloaded patch seem to be missing. Warning messages
about offset or fuzz may also be encountered when applying a patch. Do not worry about these warnings, as the
patch was still successfully applied.

• During the compilation of most packages, there will be several warnings that scroll by on the screen. These are
normal and can safely be ignored. These warnings are as they appear—warnings about deprecated, but not invalid,
use of the C or C++ syntax. C standards change fairly often, and some packages still use the older standard. This is
not a problem, but does prompt the warning.

• Check one last time that the LFS environment variable is set up properly:

echo $LFS

Make sure the output shows the path to the LFS partition's mount point, which is /mnt/lfs, using our example.

• Finally, two last important items must be emphasized:

Important

The build instructions assume that the Host System Requirements, including symbolic links, have been
set properly:

• bash is the shell in use.

• sh is a symbolic link to bash.

• /usr/bin/awk is a symbolic link to gawk.

• /usr/bin/yacc is a symbolic link to bison or a small script that executes bison.

Important

To re-emphasize the build process:
1. Place all the sources and patches in a directory that will be accessible from the chroot environment

such as /mnt/lfs/sources/. Do not put sources in /mnt/lfs/tools/.
2. Change to the sources directory.
3. For each package:

a. Using the tar program, extract the package to be built. In Chapter 5, ensure you are the lfs user
when extracting the package.

b. Change to the directory created when the package was extracted.
c. Follow the book's instructions for building the package.
d. Change back to the sources directory.
e. Delete the extracted source directory unless instructed otherwise.

Linux From Scratch - Version 7.10

37

5.4. Binutils-2.27 - Pass 1
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1 SBU
Required disk space: 519 MB

5.4.1. Installation of Cross Binutils

Note

Go back and re-read the notes in the previous section. Understanding the notes labeled important will save
you a lot of problems later.

It is important that Binutils be the first package compiled because both Glibc and GCC perform various tests on the
available linker and assembler to determine which of their own features to enable.

The Binutils documentation recommends building Binutils in a dedicated build directory:

mkdir -v build
cd build

Note

In order for the SBU values listed in the rest of the book to be of any use, measure the time it takes to build
this package from the configuration, up to and including the first install. To achieve this easily, wrap the
commands in a time command like this: time { ./configure ... && ... && make install; }.

Note

The approximate build SBU values and required disk space in Chapter 5 does not include test suite data.

Now prepare Binutils for compilation:

../configure --prefix=/tools \
 --with-sysroot=$LFS \
 --with-lib-path=/tools/lib \
 --target=$LFS_TGT \
 --disable-nls \
 --disable-werror

The meaning of the configure options:

--prefix=/tools

This tells the configure script to prepare to install the Binutils programs in the /tools directory.

--with-sysroot=$LFS

For cross compilation, this tells the build system to look in $LFS for the target system libraries as needed.

--with-lib-path=/tools/lib

This specifies which library path the linker should be configured to use.

Linux From Scratch - Version 7.10

38

--target=$LFS_TGT
Because the machine description in the LFS_TGT variable is slightly different than the value returned by the
config.guess script, this switch will tell the configure script to adjust Binutil's build system for building a cross
linker.

--disable-nls
This disables internationalization as i18n is not needed for the temporary tools.

--disable-werror
This prevents the build from stopping in the event that there are warnings from the host's compiler.

Continue with compiling the package:

make

Compilation is now complete. Ordinarily we would now run the test suite, but at this early stage the test suite framework
(Tcl, Expect, and DejaGNU) is not yet in place. The benefits of running the tests at this point are minimal since the
programs from this first pass will soon be replaced by those from the second.

If building on x86_64, create a symlink to ensure the sanity of the toolchain:

case $(uname -m) in
 x86_64) mkdir -v /tools/lib && ln -sv lib /tools/lib64 ;;
esac

Install the package:

make install

Details on this package are located in Section 6.13.2, “Contents of Binutils.”

Linux From Scratch - Version 7.10

39

5.5. GCC-6.2.0 - Pass 1
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 8.3 SBU
Required disk space: 2.5 GB

5.5.1. Installation of Cross GCC
GCC now requires the GMP, MPFR and MPC packages. As these packages may not be included in your host
distribution, they will be built with GCC. Unpack each package into the GCC source directory and rename the resulting
directories so the GCC build procedures will automatically use them:

Note

There are frequent misunderstandings about this chapter. The procedures are the same as every other chapter
as explained earlier (Package build instructions). First extract the gcc tarball from the sources directory and
then change to the directory created. Only then should you proceed with the instructions below.

tar -xf ../mpfr-3.1.4.tar.xz
mv -v mpfr-3.1.4 mpfr
tar -xf ../gmp-6.1.1.tar.xz
mv -v gmp-6.1.1 gmp
tar -xf ../mpc-1.0.3.tar.gz
mv -v mpc-1.0.3 mpc

The following command will change the location of GCC's default dynamic linker to use the one installed in /tools.
It also removes /usr/include from GCC's include search path. Issue:

for file in \
 $(find gcc/config -name linux64.h -o -name linux.h -o -name sysv4.h)
do
 cp -uv $file{,.orig}
 sed -e 's@/lib\(64\)\?\(32\)\?/ld@/tools&@g' \
 -e 's@/usr@/tools@g' $file.orig > $file
 echo '
#undef STANDARD_STARTFILE_PREFIX_1
#undef STANDARD_STARTFILE_PREFIX_2
#define STANDARD_STARTFILE_PREFIX_1 "/tools/lib/"
#define STANDARD_STARTFILE_PREFIX_2 ""' >> $file
 touch $file.orig
done

In case the above seems hard to follow, let's break it down a bit. First we find all the files under the gcc/config
directory that are named either linux.h, linux64.h or sysv4.h. For each file found, we copy it to a file of the
same name but with an added suffix of “.orig”. Then the first sed expression prepends “/tools” to every instance of
“/lib/ld”, “/lib64/ld” or “/lib32/ld”, while the second one replaces hard-coded instances of “/usr”. Next, we add our
define statements which alter the default startfile prefix to the end of the file. Note that the trailing “/” in “/tools/lib/” is
required. Finally, we use touch to update the timestamp on the copied files. When used in conjunction with cp -u, this
prevents unexpected changes to the original files in case the commands are inadvertently run twice.

Linux From Scratch - Version 7.10

40

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd build

Prepare GCC for compilation:

../configure \
 --target=$LFS_TGT \
 --prefix=/tools \
 --with-glibc-version=2.11 \
 --with-sysroot=$LFS \
 --with-newlib \
 --without-headers \
 --with-local-prefix=/tools \
 --with-native-system-header-dir=/tools/include \
 --disable-nls \
 --disable-shared \
 --disable-multilib \
 --disable-decimal-float \
 --disable-threads \
 --disable-libatomic \
 --disable-libgomp \
 --disable-libmpx \
 --disable-libquadmath \
 --disable-libssp \
 --disable-libvtv \
 --disable-libstdcxx \
 --enable-languages=c,c++

The meaning of the configure options:

--with-newlib
Since a working C library is not yet available, this ensures that the inhibit_libc constant is defined when building
libgcc. This prevents the compiling of any code that requires libc support.

--without-headers
When creating a complete cross-compiler, GCC requires standard headers compatible with the target system. For
our purposes these headers will not be needed. This switch prevents GCC from looking for them.

--with-local-prefix=/tools
The local prefix is the location in the system that GCC will search for locally installed include files. The default is /
usr/local. Setting this to /tools helps keep the host location of /usr/local out of this GCC's search path.

--with-native-system-header-dir=/tools/include
By default GCC searches /usr/include for system headers. In conjunction with the sysroot switch, this would
translate normally to $LFS/usr/include. However the headers that will be installed in the next two sections
will go to $LFS/tools/include. This switch ensures that gcc will find them correctly. In the second pass of
GCC, this same switch will ensure that no headers from the host system are found.

--disable-shared
This switch forces GCC to link its internal libraries statically. We do this to avoid possible issues with the host
system.

Linux From Scratch - Version 7.10

41

--disable-decimal-float, --disable-threads, --disable-libatomic, --disable-
libgomp, --disable-libmpx, --disable-libquadmath, --disable-libssp, --disable-
libvtv, --disable-libstdcxx

These switches disable support for the decimal floating point extension, threading, libatomic, libgomp, libmpx,
libquadmath, libssp, libvtv, and the C++ standard library respectively. These features will fail to compile when
building a cross-compiler and are not necessary for the task of cross-compiling the temporary libc.

--disable-multilib
On x86_64, LFS does not yet support a multilib configuration. This switch is harmless for x86.

--enable-languages=c,c++
This option ensures that only the C and C++ compilers are built. These are the only languages needed now.

Compile GCC by running:

make

Compilation is now complete. At this point, the test suite would normally be run, but, as mentioned before, the test
suite framework is not in place yet. The benefits of running the tests at this point are minimal since the programs from
this first pass will soon be replaced.

Install the package:

make install

Details on this package are located in Section 6.17.2, “Contents of GCC.”

Linux From Scratch - Version 7.10

42

5.6. Linux-4.7.2 API Headers
The Linux API Headers (in linux-4.7.2.tar.xz) expose the kernel's API for use by Glibc.

Approximate build time: less than 0.1 SBU
Required disk space: 750 MB

5.6.1. Installation of Linux API Headers
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in
LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.

Make sure there are no stale files embedded in the package:

make mrproper

Now extract the user-visible kernel headers from the source. They are placed in an intermediate local directory and
copied to the needed location because the extraction process removes any existing files in the target directory.

make INSTALL_HDR_PATH=dest headers_install
cp -rv dest/include/* /tools/include

Details on this package are located in Section 6.7.2, “Contents of Linux API Headers.”

Linux From Scratch - Version 7.10

43

5.7. Glibc-2.24
The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching
directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

Approximate build time: 4.0 SBU

Required disk space: 715 MB

5.7.1. Installation of Glibc

The Glibc documentation recommends building Glibc in a dedicated build directory:

mkdir -v build
cd build

Next, prepare Glibc for compilation:

../configure \
 --prefix=/tools \
 --host=$LFS_TGT \
 --build=$(../scripts/config.guess) \
 --enable-kernel=2.6.32 \
 --with-headers=/tools/include \
 libc_cv_forced_unwind=yes \
 libc_cv_c_cleanup=yes

The meaning of the configure options:

--host=$LFS_TGT, --build=$(../scripts/config.guess)

The combined effect of these switches is that Glibc's build system configures itself to cross-compile, using the
cross-linker and cross-compiler in /tools.

--enable-kernel=2.6.32

This tells Glibc to compile the library with support for 2.6.32 and later Linux kernels. Workarounds for older
kernels are not enabled.

--with-headers=/tools/include

This tells Glibc to compile itself against the headers recently installed to the tools directory, so that it knows exactly
what features the kernel has and can optimize itself accordingly.

libc_cv_forced_unwind=yes

The linker installed during Section 5.4, “Binutils-2.27 - Pass 1” was cross-compiled and as such cannot be used
until Glibc has been installed. This means that the configure test for force-unwind support will fail, as it relies
on a working linker. The libc_cv_forced_unwind=yes variable is passed in order to inform configure that force-
unwind support is available without it having to run the test.

libc_cv_c_cleanup=yes

Similarly, we pass libc_cv_c_cleanup=yes through to the configure script so that the test is skipped and C cleanup
handling support is configured.

Linux From Scratch - Version 7.10

44

During this stage the following warning might appear:

configure: WARNING:
*** These auxiliary programs are missing or
*** incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless. This msgfmt program is part of the Gettext
package which the host distribution should provide.

Note

There have been reports that this package may fail when building as a "parallel make". If this occurs, rerun
the make command with a "-j1" option.

Compile the package:

make

Install the package:

make install

Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new
toolchain are working as expected. To perform a sanity check, run the following commands:

echo 'int main(){}' > dummy.c
$LFS_TGT-gcc dummy.c
readelf -l a.out | grep ': /tools'

If everything is working correctly, there should be no errors, and the output of the last command will be of
the form:

[Requesting program interpreter: /tools/lib/ld-linux.so.2]

Note that for 64-bit machines, the interpreter name will be /tools/lib64/ld-linux-x86-64.so.2.

If the output is not shown as above or there was no output at all, then something is wrong. Investigate and
retrace the steps to find out where the problem is and correct it. This issue must be resolved before continuing
on.

Once all is well, clean up the test files:

rm -v dummy.c a.out

Note

Building Binutils in the section after next will serve as an additional check that the toolchain has been built
properly. If Binutils fails to build, it is an indication that something has gone wrong with the previous Binutils,
GCC, or Glibc installations.

Linux From Scratch - Version 7.10

45

Details on this package are located in Section 6.9.3, “Contents of Glibc.”

Linux From Scratch - Version 7.10

46

5.8. Libstdc++-6.2.0
Libstdc++ is the standard C++ library. It is needed for the correct operation of the g++ compiler.

Approximate build time: 0.4 SBU
Required disk space: 896 MB

5.8.1. Installation of Target Libstdc++

Note

Libstdc++ is part of the GCC sources. You should first unpack the GCC tarball and change to the gcc-6.
2.0 directory.

Create a separate build directory for Libstdc++ and enter it:

mkdir -v build
cd build

Prepare Libstdc++ for compilation:

../libstdc++-v3/configure \
 --host=$LFS_TGT \
 --prefix=/tools \
 --disable-multilib \
 --disable-nls \
 --disable-libstdcxx-threads \
 --disable-libstdcxx-pch \
 --with-gxx-include-dir=/tools/$LFS_TGT/include/c++/6.2.0

The meaning of the configure options:

--host=...
Indicates to use the cross compiler we have just built instead of the one in /usr/bin.

--disable-libstdcxx-threads
Since we have not yet built the C threads library, the C++ one cannot be built either.

--disable-libstdcxx-pch
This switch prevents the installation of precompiled include files, which are not needed at this stage.

--with-gxx-include-dir=/tools/$LFS_TGT/include/c++/6.2.0
This is the location where the standard include files are searched by the C++ compiler. In a normal build, this
information is automatically passed to the Libstdc++ configure options from the top level directory. In our case,
this information must be explicitly given.

Compile libstdc++ by running:

make

Install the library:

make install

Linux From Scratch - Version 7.10

47

Details on this package are located in Section 6.17.2, “Contents of GCC.”

Linux From Scratch - Version 7.10

48

5.9. Binutils-2.27 - Pass 2
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1.1 SBU
Required disk space: 533 MB

5.9.1. Installation of Binutils
Create a separate build directory again:

mkdir -v build
cd build

Prepare Binutils for compilation:

CC=$LFS_TGT-gcc \
AR=$LFS_TGT-ar \
RANLIB=$LFS_TGT-ranlib \
../configure \
 --prefix=/tools \
 --disable-nls \
 --disable-werror \
 --with-lib-path=/tools/lib \
 --with-sysroot

The meaning of the new configure options:

CC=$LFS_TGT-gcc AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib
Because this is really a native build of Binutils, setting these variables ensures that the build system uses the cross-
compiler and associated tools instead of the ones on the host system.

--with-lib-path=/tools/lib
This tells the configure script to specify the library search path during the compilation of Binutils, resulting in /
tools/lib being passed to the linker. This prevents the linker from searching through library directories on
the host.

--with-sysroot
The sysroot feature enables the linker to find shared objects which are required by other shared objects explicitly
included on the linker's command line. Without this, some packages may not build successfully on some hosts.

Compile the package:

make

Install the package:

make install

Now prepare the linker for the “Re-adjusting” phase in the next chapter:

make -C ld clean
make -C ld LIB_PATH=/usr/lib:/lib
cp -v ld/ld-new /tools/bin

Linux From Scratch - Version 7.10

49

The meaning of the make parameters:

-C ld clean
This tells the make program to remove all compiled files in the ld subdirectory.

-C ld LIB_PATH=/usr/lib:/lib
This option rebuilds everything in the ld subdirectory. Specifying the LIB_PATH Makefile variable on the
command line allows us to override the default value of the temporary tools and point it to the proper final path. The
value of this variable specifies the linker's default library search path. This preparation is used in the next chapter.

Details on this package are located in Section 6.13.2, “Contents of Binutils.”

Linux From Scratch - Version 7.10

50

5.10. GCC-6.2.0 - Pass 2
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 11 SBU
Required disk space: 2.9 nGB

5.10.1. Installation of GCC
Our first build of GCC has installed a couple of internal system headers. Normally one of them, limits.h, will in turn
include the corresponding system limits.h header, in this case, /tools/include/limits.h. However, at the
time of the first build of gcc /tools/include/limits.h did not exist, so the internal header that GCC installed
is a partial, self-contained file and does not include the extended features of the system header. This was adequate for
building the temporary libc, but this build of GCC now requires the full internal header. Create a full version of the
internal header using a command that is identical to what the GCC build system does in normal circumstances:

cat gcc/limitx.h gcc/glimits.h gcc/limity.h > \
 `dirname $($LFS_TGT-gcc -print-libgcc-file-name)`/include-fixed/limits.h

Once again, change the location of GCC's default dynamic linker to use the one installed in /tools.

for file in \
 $(find gcc/config -name linux64.h -o -name linux.h -o -name sysv4.h)
do
 cp -uv $file{,.orig}
 sed -e 's@/lib\(64\)\?\(32\)\?/ld@/tools&@g' \
 -e 's@/usr@/tools@g' $file.orig > $file
 echo '
#undef STANDARD_STARTFILE_PREFIX_1
#undef STANDARD_STARTFILE_PREFIX_2
#define STANDARD_STARTFILE_PREFIX_1 "/tools/lib/"
#define STANDARD_STARTFILE_PREFIX_2 ""' >> $file
 touch $file.orig
done

As in the first build of GCC it requires the GMP, MPFR and MPC packages. Unpack the tarballs and move them into
the required directory names:

tar -xf ../mpfr-3.1.4.tar.xz
mv -v mpfr-3.1.4 mpfr
tar -xf ../gmp-6.1.1.tar.xz
mv -v gmp-6.1.1 gmp
tar -xf ../mpc-1.0.3.tar.gz
mv -v mpc-1.0.3 mpc

Create a separate build directory again:

mkdir -v build
cd build

Before starting to build GCC, remember to unset any environment variables that override the default optimization flags.

Linux From Scratch - Version 7.10

51

Now prepare GCC for compilation:

CC=$LFS_TGT-gcc \
CXX=$LFS_TGT-g++ \
AR=$LFS_TGT-ar \
RANLIB=$LFS_TGT-ranlib \
../configure \
 --prefix=/tools \
 --with-local-prefix=/tools \
 --with-native-system-header-dir=/tools/include \
 --enable-languages=c,c++ \
 --disable-libstdcxx-pch \
 --disable-multilib \
 --disable-bootstrap \
 --disable-libgomp

The meaning of the new configure options:

--enable-languages=c,c++

This option ensures that both the C and C++ compilers are built.

--disable-libstdcxx-pch

Do not build the pre-compiled header (PCH) for libstdc++. It takes up a lot of space, and we have no use for it.

--disable-bootstrap

For native builds of GCC, the default is to do a "bootstrap" build. This does not just compile GCC, but compiles
it several times. It uses the programs compiled in a first round to compile itself a second time, and then again a
third time. The second and third iterations are compared to make sure it can reproduce itself flawlessly. This also
implies that it was compiled correctly. However, the LFS build method should provide a solid compiler without
the need to bootstrap each time.

Compile the package:

make

Install the package:

make install

As a finishing touch, create a symlink. Many programs and scripts run cc instead of gcc, which is used to keep programs
generic and therefore usable on all kinds of UNIX systems where the GNU C compiler is not always installed. Running
cc leaves the system administrator free to decide which C compiler to install:

ln -sv gcc /tools/bin/cc

Linux From Scratch - Version 7.10

52

Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new
toolchain are working as expected. To perform a sanity check, run the following commands:

echo 'int main(){}' > dummy.c
cc dummy.c
readelf -l a.out | grep ': /tools'

If everything is working correctly, there should be no errors, and the output of the last command will be of
the form:

[Requesting program interpreter: /tools/lib/ld-linux.so.2]

Note that /tools/lib, or /tools/lib64 for 64-bit machines appears as the prefix of the dynamic linker.

If the output is not shown as above or there was no output at all, then something is wrong. Investigate and
retrace the steps to find out where the problem is and correct it. This issue must be resolved before continuing
on. First, perform the sanity check again, using gcc instead of cc. If this works, then the /tools/bin/
cc symlink is missing. Install the symlink as per above. Next, ensure that the PATH is correct. This can be
checked by running echo $PATH and verifying that /tools/bin is at the head of the list. If the PATH is
wrong it could mean that you are not logged in as user lfs or that something went wrong back in Section 4.4,
“Setting Up the Environment.”

Once all is well, clean up the test files:

rm -v dummy.c a.out

Details on this package are located in Section 6.17.2, “Contents of GCC.”

Linux From Scratch - Version 7.10

53

5.11. Tcl-core-8.6.6
The Tcl package contains the Tool Command Language.

Approximate build time: 0.4 SBU
Required disk space: 40 MB

5.11.1. Installation of Tcl-core
This package and the next three (Expect, DejaGNU, and Check) are installed to support running the test suites for
GCC and Binutils and other packages. Installing four packages for testing purposes may seem excessive, but it is very
reassuring, if not essential, to know that the most important tools are working properly. Even if the test suites are not
run in this chapter (they are not mandatory), these packages are required to run the test suites in Chapter 6.

Note that the Tcl package used here is a minimal version needed to run the LFS tests. For the full package, see the
BLFS Tcl procedures.

Prepare Tcl for compilation:

cd unix
./configure --prefix=/tools

Build the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Tcl test suite anyway, issue the following command:

TZ=UTC make test

The Tcl test suite may experience failures under certain host conditions that are not fully understood. Therefore, test
suite failures here are not surprising, and are not considered critical. The TZ=UTC parameter sets the time zone to
Coordinated Universal Time (UTC), but only for the duration of the test suite run. This ensures that the clock tests are
exercised correctly. Details on the TZ environment variable are provided in Chapter 7.

Install the package:

make install

Make the installed library writable so debugging symbols can be removed later:

chmod -v u+w /tools/lib/libtcl8.6.so

Install Tcl's headers. The next package, Expect, requires them to build.

make install-private-headers

Now make a necessary symbolic link:

ln -sv tclsh8.6 /tools/bin/tclsh

5.11.2. Contents of Tcl-core
Installed programs: tclsh (link to tclsh8.6) and tclsh8.6
Installed library: libtcl8.6.so, libtclstub8.6.a

http://www.linuxfromscratch.org/blfs/view/7.10/general/tcl.html

Linux From Scratch - Version 7.10

54

Short Descriptions

tclsh8.6 The Tcl command shell

tclsh A link to tclsh8.6

libtcl8.6.so The Tcl library

libtclstub8.6.a The Tcl Stub library

Linux From Scratch - Version 7.10

55

5.12. Expect-5.45
The Expect package contains a program for carrying out scripted dialogues with other interactive programs.

Approximate build time: 0.1 SBU
Required disk space: 4.3 MB

5.12.1. Installation of Expect
First, force Expect's configure script to use /bin/stty instead of a /usr/local/bin/stty it may find on the
host system. This will ensure that our test suite tools remain sane for the final builds of our toolchain:

cp -v configure{,.orig}
sed 's:/usr/local/bin:/bin:' configure.orig > configure

Now prepare Expect for compilation:

./configure --prefix=/tools \
 --with-tcl=/tools/lib \
 --with-tclinclude=/tools/include

The meaning of the configure options:

--with-tcl=/tools/lib
This ensures that the configure script finds the Tcl installation in the temporary tools location instead of possibly
locating an existing one on the host system.

--with-tclinclude=/tools/include
This explicitly tells Expect where to find Tcl's internal headers. Using this option avoids conditions where
configure fails because it cannot automatically discover the location of Tcl's headers.

Build the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Expect test suite anyway, issue the following command:

make test

Note that the Expect test suite is known to experience failures under certain host conditions that are not within our
control. Therefore, test suite failures here are not surprising and are not considered critical.

Install the package:

make SCRIPTS="" install

The meaning of the make parameter:

SCRIPTS=""
This prevents installation of the supplementary Expect scripts, which are not needed.

5.12.2. Contents of Expect
Installed program: expect
Installed library: libexpect-5.45.so

Linux From Scratch - Version 7.10

56

Short Descriptions

expect Communicates with other interactive programs according to a script

libexpect-5.45.so Contains functions that allow Expect to be used as a Tcl extension or to be used directly
from C or C++ (without Tcl)

Linux From Scratch - Version 7.10

57

5.13. DejaGNU-1.6
The DejaGNU package contains a framework for testing other programs.

Approximate build time: less than 0.1 SBU
Required disk space: 3.2 MB

5.13.1. Installation of DejaGNU
Prepare DejaGNU for compilation:

./configure --prefix=/tools

Build and install the package:

make install

To test the results, issue:

make check

5.13.2. Contents of DejaGNU
Installed program: runtest

Short Descriptions

runtest A wrapper script that locates the proper expect shell and then runs DejaGNU

Linux From Scratch - Version 7.10

58

5.14. Check-0.10.0
Check is a unit testing framework for C.

Approximate build time: 0.1 SBU
Required disk space: 9.5 MB

5.14.1. Installation of Check
Prepare Check for compilation:

PKG_CONFIG= ./configure --prefix=/tools

The meaning of the configure parameter:

PKG_CONFIG=
This tells the configure script to ignore any pkg-config options that may cause the system to try to link with libraries
not in the /tools directory.

Build the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Check test suite anyway, issue the following command:

make check

Note that the Check test suite may take a relatively long (up to 4 SBU) time.

Install the package:

make install

5.14.2. Contents of Check
Installed program: checkmk
Installed library: libcheck.{a,so}

Short Descriptions

checkmk Awk script for generating C unit tests for use with the Check unit testing framework

libcheck.{a,so} Contains functions that allow Check to be called from a test program

Linux From Scratch - Version 7.10

59

5.15. Ncurses-6.0
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.5 SBU
Required disk space: 38 MB

5.15.1. Installation of Ncurses
First, ensure that gawk is found first during configuration:

sed -i s/mawk// configure

Prepare Ncurses for compilation:

./configure --prefix=/tools \
 --with-shared \
 --without-debug \
 --without-ada \
 --enable-widec \
 --enable-overwrite

The meaning of the configure options:

--without-ada
This ensures that Ncurses does not build support for the Ada compiler which may be present on the host but will
not be available once we enter the chroot environment.

--enable-overwrite
This tells Ncurses to install its header files into /tools/include, instead of /tools/include/ncurses,
to ensure that other packages can find the Ncurses headers successfully.

--enable-widec
This switch causes wide-character libraries (e.g., libncursesw.so.6.0) to be built instead of normal ones
(e.g., libncurses.so.6.0). These wide-character libraries are usable in both multibyte and traditional 8-bit
locales, while normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are source-
compatible, but not binary-compatible.

Compile the package:

make

This package has a test suite, but it can only be run after the package has been installed. The tests reside in the test/
directory. See the README file in that directory for further details.

Install the package:

make install

Details on this package are located in Section 6.20.2, “Contents of Ncurses.”

Linux From Scratch - Version 7.10

60

5.16. Bash-4.3.30
The Bash package contains the Bourne-Again SHell.

Approximate build time: 0.4 SBU
Required disk space: 54 MB

5.16.1. Installation of Bash
Prepare Bash for compilation:

./configure --prefix=/tools --without-bash-malloc

The meaning of the configure options:

--without-bash-malloc
This option turns off the use of Bash's memory allocation (malloc) function which is known to cause
segmentation faults. By turning this option off, Bash will use the malloc functions from Glibc which are more
stable.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Bash test suite anyway, issue the following command:

make tests

Install the package:

make install

Make a link for the programs that use sh for a shell:

ln -sv bash /tools/bin/sh

Details on this package are located in Section 6.33.2, “Contents of Bash.”

Linux From Scratch - Version 7.10

61

5.17. Bzip2-1.0.6
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2
yields a much better compression percentage than with the traditional gzip.

Approximate build time: less than 0.1 SBU
Required disk space: 5.2 MB

5.17.1. Installation of Bzip2
The Bzip2 package does not contain a configure script. Compile and test it with:

make

Install the package:

make PREFIX=/tools install

Details on this package are located in Section 6.18.2, “Contents of Bzip2.”

Linux From Scratch - Version 7.10

62

5.18. Coreutils-8.25
The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 0.6 SBU
Required disk space: 132 MB

5.18.1. Installation of Coreutils
Prepare Coreutils for compilation:

./configure --prefix=/tools --enable-install-program=hostname

The meaning of the configure options:

--enable-install-program=hostname
This enables the hostname binary to be built and installed – it is disabled by default but is required by the Perl
test suite.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Coreutils test suite anyway, issue the following command:

make RUN_EXPENSIVE_TESTS=yes check

The RUN_EXPENSIVE_TESTS=yes parameter tells the test suite to run several additional tests that are considered
relatively expensive (in terms of CPU power and memory usage) on some platforms, but generally are not a problem
on Linux.

Install the package:

make install

Details on this package are located in Section 6.50.2, “Contents of Coreutils.”

Linux From Scratch - Version 7.10

63

5.19. Diffutils-3.5
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.2 SBU
Required disk space: 21.5 MB

5.19.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Diffutils test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.51.2, “Contents of Diffutils.”

Linux From Scratch - Version 7.10

64

5.20. File-5.28
The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.1 SBU
Required disk space: 15 MB

5.20.1. Installation of File
Prepare File for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the File test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.12.2, “Contents of File.”

Linux From Scratch - Version 7.10

65

5.21. Findutils-4.6.0
The Findutils package contains programs to find files. These programs are provided to recursively search through a
directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if the
database has not been recently updated).

Approximate build time: 0.3 SBU
Required disk space: 35 MB

5.21.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Findutils test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.53.2, “Contents of Findutils.”

Linux From Scratch - Version 7.10

66

5.22. Gawk-4.1.3
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.2 SBU
Required disk space: 34 MB

5.22.1. Installation of Gawk
Prepare Gawk for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Gawk test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.52.2, “Contents of Gawk.”

Linux From Scratch - Version 7.10

67

5.23. Gettext-0.19.8.1
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled
with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 0.9 SBU
Required disk space: 164 MB

5.23.1. Installation of Gettext
For our temporary set of tools, we only need to build and install three programs from Gettext.

Prepare Gettext for compilation:

cd gettext-tools
EMACS="no" ./configure --prefix=/tools --disable-shared

The meaning of the configure option:

EMACS="no"
This prevents the configure script from determining where to install Emacs Lisp files as the test is known to hang
on some hosts.

--disable-shared
We do not need to install any of the shared Gettext libraries at this time, therefore there is no need to build them.

Compile the package:

make -C gnulib-lib
make -C intl pluralx.c
make -C src msgfmt
make -C src msgmerge
make -C src xgettext

As only three programs have been compiled, it is not possible to run the test suite without compiling additional support
libraries from the Gettext package. It is therefore not recommended to attempt to run the test suite at this stage.

Install the msgfmt, msgmerge and xgettext programs:

cp -v src/{msgfmt,msgmerge,xgettext} /tools/bin

Details on this package are located in Section 6.47.2, “Contents of Gettext.”

Linux From Scratch - Version 7.10

68

5.24. Grep-2.25
The Grep package contains programs for searching through files.

Approximate build time: 0.2 SBU
Required disk space: 18 MB

5.24.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Grep test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.31.2, “Contents of Grep.”

Linux From Scratch - Version 7.10

69

5.25. Gzip-1.8
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.1 SBU
Required disk space: 8.9 MB

5.25.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Gzip test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.57.2, “Contents of Gzip.”

Linux From Scratch - Version 7.10

70

5.26. M4-1.4.17
The M4 package contains a macro processor.

Approximate build time: 0.2 SBU
Required disk space: 18 MB

5.26.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the M4 test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.28.2, “Contents of M4.”

Linux From Scratch - Version 7.10

71

5.27. Make-4.2.1
The Make package contains a program for compiling packages.

Approximate build time: 0.1 SBU
Required disk space: 12.5 MB

5.27.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/tools --without-guile

The meaning of the configure option:

--without-guile
This ensures that Make-4.2.1 won't link against Guile libraries, which may be present on the host system, but won't
be available within the chroot environment in the next chapter.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Make test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.61.2, “Contents of Make.”

Linux From Scratch - Version 7.10

72

5.28. Patch-2.7.5
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created by
the diff program.

Approximate build time: 0.2 SBU
Required disk space: 10.4 MB

5.28.1. Installation of Patch
Prepare Patch for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Patch test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.62.2, “Contents of Patch.”

Linux From Scratch - Version 7.10

73

5.29. Perl-5.24.0
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 1.3 SBU
Required disk space: 248 MB

5.29.1. Installation of Perl
Prepare Perl for compilation:

sh Configure -des -Dprefix=/tools -Dlibs=-lm

Build the package:

make

Although Perl comes with a test suite, it would be better to wait until it is installed in the next chapter.

Only a few of the utilities and libraries need to be installed at this time:

cp -v perl cpan/podlators/scripts/pod2man /tools/bin
mkdir -pv /tools/lib/perl5/5.24.0
cp -Rv lib/* /tools/lib/perl5/5.24.0

Details on this package are located in Section 6.40.2, “Contents of Perl.”

Linux From Scratch - Version 7.10

74

5.30. Sed-4.2.2
The Sed package contains a stream editor.

Approximate build time: 0.1 SBU
Required disk space: 10.0 MB

5.30.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Sed test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.24.2, “Contents of Sed.”

Linux From Scratch - Version 7.10

75

5.31. Tar-1.29
The Tar package contains an archiving program.

Approximate build time: 0.3 SBU
Required disk space: 32 MB

5.31.1. Installation of Tar
Prepare Tar for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Tar test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.68.2, “Contents of Tar.”

Linux From Scratch - Version 7.10

76

5.32. Texinfo-6.1
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.2 SBU
Required disk space: 99 MB

5.32.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Texinfo test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.69.2, “Contents of Texinfo.”

Linux From Scratch - Version 7.10

77

5.33. Util-linux-2.28.1
The Util-linux package contains miscellaneous utility programs.

Approximate build time: 0.8 SBU
Required disk space: 114 MB

5.33.1. Installation of Util-linux
Prepare Util-linux for compilation:

./configure --prefix=/tools \
 --without-python \
 --disable-makeinstall-chown \
 --without-systemdsystemunitdir \
 PKG_CONFIG=""

The meaning of the configure option:

--without-python
This switch disables using Python if it is installed on the host system. It avoids trying to build unneeded bindings.

--disable-makeinstall-chown
This switch disables using the chown command during installation. This is not needed when installing into the /
tools directory and avoids the necessity of installing as root.

--without-systemdsystemunitdir
On systems that use systemd, the package tries to install a systemd specific file to a non-existent directory in /
tools. This switch disables the unnecessary action.

PKG_CONFIG=""
Setting this environment variable prevents adding unneeded features that may be available on the host. Note that
the location shown for setting this environment variable is different from other LFS sections where variables are
set preceding the command. This location is shown to demonstrate an alternative way of setting an environment
variable when using configure.

Compile the package:

make

Install the package:

make install

Linux From Scratch - Version 7.10

78

5.34. Xz-5.2.2
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and
the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with
the traditional gzip or bzip2 commands.

Approximate build time: 0.2 SBU
Required disk space: 16 MB

5.34.1. Installation of Xz
Prepare Xz for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here
in this chapter. To run the Xz test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.45.2, “Contents of Xz.”

Linux From Scratch - Version 7.10

79

5.35. Stripping
The steps in this section are optional, but if the LFS partition is rather small, it is beneficial to learn that unnecessary
items can be removed. The executables and libraries built so far contain about 70 MB of unneeded debugging symbols.
Remove those symbols with:

strip --strip-debug /tools/lib/*
/usr/bin/strip --strip-unneeded /tools/{,s}bin/*

These commands will skip a number of files, reporting that it does not recognize their file format. Most of these are
scripts instead of binaries. Also use the system strip command to include the strip binary in /tools.

Take care not to use --strip-unneeded on the libraries. The static ones would be destroyed and the toolchain
packages would need to be built all over again.

To save more, remove the documentation:

rm -rf /tools/{,share}/{info,man,doc}

At this point, you should have at least 3 GB of free space in $LFS that can be used to build and install Glibc and Gcc
in the next phase. If you can build and install Glibc, you can build and install the rest too.

5.36. Changing Ownership

Note

The commands in the remainder of this book must be performed while logged in as user root and no longer
as user lfs. Also, double check that $LFS is set in root's environment.

Currently, the $LFS/tools directory is owned by the user lfs, a user that exists only on the host system. If the $LFS/
tools directory is kept as is, the files are owned by a user ID without a corresponding account. This is dangerous
because a user account created later could get this same user ID and would own the $LFS/tools directory and all
the files therein, thus exposing these files to possible malicious manipulation.

To avoid this issue, you could add the lfs user to the new LFS system later when creating the /etc/passwd file,
taking care to assign it the same user and group IDs as on the host system. Better yet, change the ownership of the
$LFS/tools directory to user root by running the following command:

chown -R root:root $LFS/tools

Although the $LFS/tools directory can be deleted once the LFS system has been finished, it can be retained to build
additional LFS systems of the same book version. How best to backup $LFS/tools is a matter of personal preference.

Caution

If you intend to keep the temporary tools for use in building future LFS systems, now is the time to back
them up. Subsequent commands in chapter 6 will alter the tools currently in place, rendering them useless
for future builds.

Linux From Scratch - Version 7.10

Part III. Building the LFS System

Linux From Scratch - Version 7.10

81

Chapter 6. Installing Basic System Software

6.1. Introduction
In this chapter, we enter the building site and start constructing the LFS system in earnest. That is, we chroot into the
temporary mini Linux system, make a few final preparations, and then begin installing the packages.

The installation of this software is straightforward. Although in many cases the installation instructions could be made
shorter and more generic, we have opted to provide the full instructions for every package to minimize the possibilities
for mistakes. The key to learning what makes a Linux system work is to know what each package is used for and why
you (or the system) may need it.

We do not recommend using optimizations. They can make a program run slightly faster, but they may also cause
compilation difficulties and problems when running the program. If a package refuses to compile when using
optimization, try to compile it without optimization and see if that fixes the problem. Even if the package does compile
when using optimization, there is the risk it may have been compiled incorrectly because of the complex interactions
between the code and build tools. Also note that the -march and -mtune options using values not specified in the
book have not been tested. This may cause problems with the toolchain packages (Binutils, GCC and Glibc). The small
potential gains achieved in using compiler optimizations are often outweighed by the risks. First-time builders of LFS
are encouraged to build without custom optimizations. The subsequent system will still run very fast and be stable at
the same time.

The order that packages are installed in this chapter needs to be strictly followed to ensure that no program accidentally
acquires a path referring to /tools hard-wired into it. For the same reason, do not compile separate packages in
parallel. Compiling in parallel may save time (especially on dual-CPU machines), but it could result in a program
containing a hard-wired path to /tools, which will cause the program to stop working when that directory is removed.

Before the installation instructions, each installation page provides information about the package, including a concise
description of what it contains, approximately how long it will take to build, and how much disk space is required
during this building process. Following the installation instructions, there is a list of programs and libraries (along with
brief descriptions of these) that the package installs.

Note

The SBU values and required disk space includes test suite data for all applicable packages in Chapter 6.

6.1.1. About libraries

In general, the LFS editors discourage building and installing static libraries. The original purpose for most static
libraries has been made obsolete in a modern Linux system. In addition linking a static library into a program can be
detrimental. If an update to the library is needed to remove a security problem, all programs that use the static library
will need to be relinked to the new library. Since the use of static libraries is not always obvious, the relevant programs
(and the procedures needed to do the linking) may not even be known.

In the procedures in Chapter 6, we remove or disable installation of most static libraries. In a few cases, especially glibc
and gcc, the use of static libraries remains essential to the general package building process. Usually this is done by
passing a --disable-static option to configure. In other cases, alternate means are needed.

For a more complete discussion of libraries, see the discussion Libraries: Static or shared? in the BLFS book.

http://www.linuxfromscratch.org/blfs//view/7.10/introduction/libraries.html

Linux From Scratch - Version 7.10

82

6.2. Preparing Virtual Kernel File Systems
Various file systems exported by the kernel are used to communicate to and from the kernel itself. These file systems
are virtual in that no disk space is used for them. The content of the file systems resides in memory.

Begin by creating directories onto which the file systems will be mounted:

mkdir -pv $LFS/{dev,proc,sys,run}

6.2.1. Creating Initial Device Nodes

When the kernel boots the system, it requires the presence of a few device nodes, in particular the console and null
devices. The device nodes must be created on the hard disk so that they are available before udevd has been started, and
additionally when Linux is started with init=/bin/bash. Create the devices by running the following commands:

mknod -m 600 $LFS/dev/console c 5 1
mknod -m 666 $LFS/dev/null c 1 3

6.2.2. Mounting and Populating /dev

The recommended method of populating the /dev directory with devices is to mount a virtual filesystem (such as
tmpfs) on the /dev directory, and allow the devices to be created dynamically on that virtual filesystem as they are
detected or accessed. Device creation is generally done during the boot process by Udev. Since this new system does not
yet have Udev and has not yet been booted, it is necessary to mount and populate /dev manually. This is accomplished
by bind mounting the host system's /dev directory. A bind mount is a special type of mount that allows you to create
a mirror of a directory or mount point to some other location. Use the following command to achieve this:

mount -v --bind /dev $LFS/dev

6.2.3. Mounting Virtual Kernel File Systems

Now mount the remaining virtual kernel filesystems:

mount -vt devpts devpts $LFS/dev/pts -o gid=5,mode=620
mount -vt proc proc $LFS/proc
mount -vt sysfs sysfs $LFS/sys
mount -vt tmpfs tmpfs $LFS/run

The meaning of the mount options for devpts:

gid=5

This ensures that all devpts-created device nodes are owned by group ID 5. This is the ID we will use later on
for the tty group. We use the group ID instead of a name, since the host system might use a different ID for
its tty group.

mode=0620

This ensures that all devpts-created device nodes have mode 0620 (user readable and writable, group writable).
Together with the option above, this ensures that devpts will create device nodes that meet the requirements of
grantpt(), meaning the Glibc pt_chown helper binary (which is not installed by default) is not necessary.

Linux From Scratch - Version 7.10

83

In some host systems, /dev/shm is a symbolic link to /run/shm. The /run tmpfs was mounted above so in this case
only a directory needs to be created.

if [-h $LFS/dev/shm]; then
 mkdir -pv $LFS/$(readlink $LFS/dev/shm)
fi

6.3. Package Management
Package Management is an often requested addition to the LFS Book. A Package Manager allows tracking the
installation of files making it easy to remove and upgrade packages. As well as the binary and library files, a package
manager will handle the installation of configuration files. Before you begin to wonder, NO—this section will not talk
about nor recommend any particular package manager. What it provides is a roundup of the more popular techniques
and how they work. The perfect package manager for you may be among these techniques or may be a combination of
two or more of these techniques. This section briefly mentions issues that may arise when upgrading packages.

Some reasons why no package manager is mentioned in LFS or BLFS include:

• Dealing with package management takes the focus away from the goals of these books—teaching how a Linux
system is built.

• There are multiple solutions for package management, each having its strengths and drawbacks. Including one that
satisfies all audiences is difficult.

There are some hints written on the topic of package management. Visit the Hints Project and see if one of them fits
your need.

6.3.1. Upgrade Issues
A Package Manager makes it easy to upgrade to newer versions when they are released. Generally the instructions in
the LFS and BLFS Book can be used to upgrade to the newer versions. Here are some points that you should be aware
of when upgrading packages, especially on a running system.

• If Glibc needs to be upgraded to a newer version, (e.g. from glibc-2.19 to glibc-2.20, it is safer to rebuild LFS.
Though you may be able to rebuild all the packages in their dependency order, we do not recommend it.

• If a package containing a shared library is updated, and if the name of the library changes, then all the packages
dynamically linked to the library need to be recompiled to link against the newer library. (Note that there is no
correlation between the package version and the name of the library.) For example, consider a package foo-1.2.3
that installs a shared library with name libfoo.so.1. Say you upgrade the package to a newer version foo-1.2.4
that installs a shared library with name libfoo.so.2. In this case, all packages that are dynamically linked
to libfoo.so.1 need to be recompiled to link against libfoo.so.2. Note that you should not remove the
previous libraries until the dependent packages are recompiled.

6.3.2. Package Management Techniques
The following are some common package management techniques. Before making a decision on a package manager,
do some research on the various techniques, particularly the drawbacks of the particular scheme.

6.3.2.1. It is All in My Head!

Yes, this is a package management technique. Some folks do not find the need for a package manager because they
know the packages intimately and know what files are installed by each package. Some users also do not need any
package management because they plan on rebuilding the entire system when a package is changed.

http://www.linuxfromscratch.org/hints/list.html

Linux From Scratch - Version 7.10

84

6.3.2.2. Install in Separate Directories

This is a simplistic package management that does not need any extra package to manage the installations. Each package
is installed in a separate directory. For example, package foo-1.1 is installed in /usr/pkg/foo-1.1 and a symlink
is made from /usr/pkg/foo to /usr/pkg/foo-1.1. When installing a new version foo-1.2, it is installed in /
usr/pkg/foo-1.2 and the previous symlink is replaced by a symlink to the new version.

Environment variables such as PATH, LD_LIBRARY_PATH, MANPATH, INFOPATH and CPPFLAGS need to be
expanded to include /usr/pkg/foo. For more than a few packages, this scheme becomes unmanageable.

6.3.2.3. Symlink Style Package Management

This is a variation of the previous package management technique. Each package is installed similar to the previous
scheme. But instead of making the symlink, each file is symlinked into the /usr hierarchy. This removes the need
to expand the environment variables. Though the symlinks can be created by the user to automate the creation, many
package managers have been written using this approach. A few of the popular ones include Stow, Epkg, Graft, and
Depot.

The installation needs to be faked, so that the package thinks that it is installed in /usr though in reality it is installed
in the /usr/pkg hierarchy. Installing in this manner is not usually a trivial task. For example, consider that you are
installing a package libfoo-1.1. The following instructions may not install the package properly:

./configure --prefix=/usr/pkg/libfoo/1.1
make
make install

The installation will work, but the dependent packages may not link to libfoo as you would expect. If you compile a
package that links against libfoo, you may notice that it is linked to /usr/pkg/libfoo/1.1/lib/libfoo.so.
1 instead of /usr/lib/libfoo.so.1 as you would expect. The correct approach is to use the DESTDIR strategy
to fake installation of the package. This approach works as follows:

./configure --prefix=/usr
make
make DESTDIR=/usr/pkg/libfoo/1.1 install

Most packages support this approach, but there are some which do not. For the non-compliant packages, you may either
need to manually install the package, or you may find that it is easier to install some problematic packages into /opt.

6.3.2.4. Timestamp Based

In this technique, a file is timestamped before the installation of the package. After the installation, a simple use of
the find command with the appropriate options can generate a log of all the files installed after the timestamp file was
created. A package manager written with this approach is install-log.

Though this scheme has the advantage of being simple, it has two drawbacks. If, during installation, the files are installed
with any timestamp other than the current time, those files will not be tracked by the package manager. Also, this
scheme can only be used when one package is installed at a time. The logs are not reliable if two packages are being
installed on two different consoles.

6.3.2.5. Tracing Installation Scripts

In this approach, the commands that the installation scripts perform are recorded. There are two techniques that one
can use:

Linux From Scratch - Version 7.10

85

The LD_PRELOAD environment variable can be set to point to a library to be preloaded before installation. During
installation, this library tracks the packages that are being installed by attaching itself to various executables such as
cp, install, mv and tracking the system calls that modify the filesystem. For this approach to work, all the executables
need to be dynamically linked without the suid or sgid bit. Preloading the library may cause some unwanted side-effects
during installation. Therefore, it is advised that one performs some tests to ensure that the package manager does not
break anything and logs all the appropriate files.

The second technique is to use strace, which logs all system calls made during the execution of the installation scripts.

6.3.2.6. Creating Package Archives

In this scheme, the package installation is faked into a separate tree as described in the Symlink style package
management. After the installation, a package archive is created using the installed files. This archive is then used to
install the package either on the local machine or can even be used to install the package on other machines.

This approach is used by most of the package managers found in the commercial distributions. Examples of package
managers that follow this approach are RPM (which, incidentally, is required by the Linux Standard Base Specification),
pkg-utils, Debian's apt, and Gentoo's Portage system. A hint describing how to adopt this style of package management
for LFS systems is located at http://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt.

Creation of package files that include dependency information is complex and is beyond the scope of LFS.

Slackware uses a tar based system for package archives. This system purposely does not handle package dependencies
as more complex package managers do. For details of Slackware package management, see http://www.slackbook.org/
html/package-management.html.

6.3.2.7. User Based Management

This scheme, unique to LFS, was devised by Matthias Benkmann, and is available from the Hints Project. In this
scheme, each package is installed as a separate user into the standard locations. Files belonging to a package are easily
identified by checking the user ID. The features and shortcomings of this approach are too complex to describe in
this section. For the details please see the hint at http://www.linuxfromscratch.org/hints/downloads/files/more_control_
and_pkg_man.txt.

6.3.3. Deploying LFS on Multiple Systems
One of the advantages of an LFS system is that there are no files that depend on the position of files on a disk system.
Cloning an LFS build to another computer with the same architecture as the base system is as simple as using tar on
the LFS partition that contains the root directory (about 250MB uncompressed for a base LFS build), copying that
file via network transfer or CD-ROM to the new system and expanding it. From that point, a few configuration files
will have to be changed. Configuration files that may need to be updated include: /etc/hosts, /etc/fstab, /
etc/passwd, /etc/group, /etc/shadow, /etc/ld.so.conf, /etc/sysconfig/rc.site, /etc/
sysconfig/network, and /etc/sysconfig/ifconfig.eth0.

A custom kernel may need to be built for the new system depending on differences in system hardware and the original
kernel configuration.

Note

There have been some reports of issues when copying between similar but not identical architectures. For
instance, the instruction set for an Intel system is not identical with an AMD processor and later versions of
some processors may have instructions that are unavailable in earlier versions.

http://refspecs.linuxfoundation.org/lsb.shtml
http://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt
http://www.slackbook.org/html/package-management.html
http://www.slackbook.org/html/package-management.html
http://www.linuxfromscratch.org/hints/list.html
http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt
http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt

Linux From Scratch - Version 7.10

86

Finally the new system has to be made bootable via Section 8.4, “Using GRUB to Set Up the Boot Process”.

6.4. Entering the Chroot Environment
It is time to enter the chroot environment to begin building and installing the final LFS system. As user root, run the
following command to enter the realm that is, at the moment, populated with only the temporary tools:

chroot "$LFS" /tools/bin/env -i \
 HOME=/root \
 TERM="$TERM" \
 PS1='\u:\w\$ ' \
 PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \
 /tools/bin/bash --login +h

The -i option given to the env command will clear all variables of the chroot environment. After that, only the HOME,
TERM, PS1, and PATH variables are set again. The TERM=$TERM construct will set the TERM variable inside chroot
to the same value as outside chroot. This variable is needed for programs like vim and less to operate properly. If other
variables are needed, such as CFLAGS or CXXFLAGS, this is a good place to set them again.

From this point on, there is no need to use the LFS variable anymore, because all work will be restricted to the LFS
file system. This is because the Bash shell is told that $LFS is now the root (/) directory.

Notice that /tools/bin comes last in the PATH. This means that a temporary tool will no longer be used once its
final version is installed. This occurs when the shell does not “remember” the locations of executed binaries—for this
reason, hashing is switched off by passing the +h option to bash.

Note that the bash prompt will say I have no name! This is normal because the /etc/passwd file has not
been created yet.

Note

It is important that all the commands throughout the remainder of this chapter and the following chapters
are run from within the chroot environment. If you leave this environment for any reason (rebooting for
example), ensure that the virtual kernel filesystems are mounted as explained in Section 6.2.2, “Mounting and
Populating /dev” and Section 6.2.3, “Mounting Virtual Kernel File Systems” and enter chroot again before
continuing with the installation.

Linux From Scratch - Version 7.10

87

6.5. Creating Directories
It is time to create some structure in the LFS file system. Create a standard directory tree by issuing the following
commands:

mkdir -pv /{bin,boot,etc/{opt,sysconfig},home,lib/firmware,mnt,opt}
mkdir -pv /{media/{floppy,cdrom},sbin,srv,var}
install -dv -m 0750 /root
install -dv -m 1777 /tmp /var/tmp
mkdir -pv /usr/{,local/}{bin,include,lib,sbin,src}
mkdir -pv /usr/{,local/}share/{color,dict,doc,info,locale,man}
mkdir -v /usr/{,local/}share/{misc,terminfo,zoneinfo}
mkdir -v /usr/libexec
mkdir -pv /usr/{,local/}share/man/man{1..8}

case $(uname -m) in
 x86_64) ln -sv lib /lib64
 ln -sv lib /usr/lib64
 ln -sv lib /usr/local/lib64 ;;
esac

mkdir -v /var/{log,mail,spool}
ln -sv /run /var/run
ln -sv /run/lock /var/lock
mkdir -pv /var/{opt,cache,lib/{color,misc,locate},local}

Directories are, by default, created with permission mode 755, but this is not desirable for all directories. In the
commands above, two changes are made—one to the home directory of user root, and another to the directories for
temporary files.

The first mode change ensures that not just anybody can enter the /root directory—the same as a normal user would
do with his or her home directory. The second mode change makes sure that any user can write to the /tmp and /var/
tmp directories, but cannot remove another user's files from them. The latter is prohibited by the so-called “sticky bit,”
the highest bit (1) in the 1777 bit mask.

6.5.1. FHS Compliance Note

The directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at https://wiki.linuxfoundation.org/
en/FHS). The FHS also stipulates the optional existence some directories such as /usr/local/games and /usr/
share/games. We create only the directories that are needed. However, feel free to create these directories.

https://wiki.linuxfoundation.org/en/FHS
https://wiki.linuxfoundation.org/en/FHS

Linux From Scratch - Version 7.10

88

6.6. Creating Essential Files and Symlinks
Some programs use hard-wired paths to programs which do not exist yet. In order to satisfy these programs, create a
number of symbolic links which will be replaced by real files throughout the course of this chapter after the software
has been installed:

ln -sv /tools/bin/{bash,cat,echo,pwd,stty} /bin
ln -sv /tools/bin/perl /usr/bin
ln -sv /tools/lib/libgcc_s.so{,.1} /usr/lib
ln -sv /tools/lib/libstdc++.so{,.6} /usr/lib
sed 's/tools/usr/' /tools/lib/libstdc++.la > /usr/lib/libstdc++.la
ln -sv bash /bin/sh

The purpose of each link:

/bin/bash

Many bash scripts specify /bin/bash.

/bin/cat

This pathname is hard-coded into Glibc's configure script.

/bin/echo

This is to satisfy one of the tests in Glibc's test suite, which expects /bin/echo.

/bin/pwd

Some configure scripts, particularly Glibc's, have this pathname hard-coded.

/bin/stty

This pathname is hard-coded into Expect, therefore it is needed for Binutils and GCC test suites to pass.

/usr/bin/perl

Many Perl scripts hard-code this path to the perl program.

/usr/lib/libgcc_s.so{,.1}

Glibc needs this for the pthreads library to work.

/usr/lib/libstdc++{,.6}

This is needed by several tests in Glibc's test suite, as well as for C++ support in GMP.

/usr/lib/libstdc++.la

This prevents a /tools reference that would otherwise be in /usr/lib/libstdc++.la after GCC is
installed.

/bin/sh

Many shell scripts hard-code /bin/sh.

Historically, Linux maintains a list of the mounted file systems in the file /etc/mtab. Modern kernels maintain this
list internally and exposes it to the user via the /proc filesystem. To satisfy utilities that expect the presence of /
etc/mtab, create the following symbolic link:

ln -sv /proc/self/mounts /etc/mtab

In order for user root to be able to login and for the name “root” to be recognized, there must be relevant entries in
the /etc/passwd and /etc/group files.

Linux From Scratch - Version 7.10

89

Create the /etc/passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/dev/null:/bin/false
daemon:x:6:6:Daemon User:/dev/null:/bin/false
messagebus:x:18:18:D-Bus Message Daemon User:/var/run/dbus:/bin/false
nobody:x:99:99:Unprivileged User:/dev/null:/bin/false
EOF

The actual password for root (the “x” used here is just a placeholder) will be set later.

Create the /etc/group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:daemon
sys:x:2:
kmem:x:3:
tape:x:4:
tty:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
adm:x:16:
messagebus:x:18:
systemd-journal:x:23:
input:x:24:
mail:x:34:
nogroup:x:99:
users:x:999:
EOF

The created groups are not part of any standard—they are groups decided on in part by the requirements of the Udev
configuration in this chapter, and in part by common convention employed by a number of existing Linux distributions.
In addition, some test suites rely on specific users or groups. The Linux Standard Base (LSB, available at http://www.
linuxbase.org) recommends only that, besides the group root with a Group ID (GID) of 0, a group bin with a GID
of 1 be present. All other group names and GIDs can be chosen freely by the system administrator since well-written
programs do not depend on GID numbers, but rather use the group's name.

To remove the “I have no name!” prompt, start a new shell. Since a full Glibc was installed in Chapter 5 and the /
etc/passwd and /etc/group files have been created, user name and group name resolution will now work:

exec /tools/bin/bash --login +h

http://www.linuxbase.org
http://www.linuxbase.org

Linux From Scratch - Version 7.10

90

Note the use of the +h directive. This tells bash not to use its internal path hashing. Without this directive, bash would
remember the paths to binaries it has executed. To ensure the use of the newly compiled binaries as soon as they are
installed, the +h directive will be used for the duration of this chapter.

The login, agetty, and init programs (and others) use a number of log files to record information such as who was
logged into the system and when. However, these programs will not write to the log files if they do not already exist.
Initialize the log files and give them proper permissions:

touch /var/log/{btmp,lastlog,faillog,wtmp}
chgrp -v utmp /var/log/lastlog
chmod -v 664 /var/log/lastlog
chmod -v 600 /var/log/btmp

The /var/log/wtmp file records all logins and logouts. The /var/log/lastlog file records when each user
last logged in. The /var/log/faillog file records failed login attempts. The /var/log/btmp file records the
bad login attempts.

Note

The /run/utmp file records the users that are currently logged in. This file is created dynamically in the
boot scripts.

Linux From Scratch - Version 7.10

91

6.7. Linux-4.7.2 API Headers
The Linux API Headers (in linux-4.7.2.tar.xz) expose the kernel's API for use by Glibc.

Approximate build time: less than 0.1 SBU
Required disk space: 755 MB

6.7.1. Installation of Linux API Headers
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in
LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.

Make sure there are no stale files and dependencies lying around from previous activity:

make mrproper

Now extract the user-visible kernel headers from the source. They are placed in an intermediate local directory and
copied to the needed location because the extraction process removes any existing files in the target directory. There
are also some hidden files used by the kernel developers and not needed by LFS that are removed from the intermediate
directory.

make INSTALL_HDR_PATH=dest headers_install
find dest/include \(-name .install -o -name ..install.cmd \) -delete
cp -rv dest/include/* /usr/include

6.7.2. Contents of Linux API Headers
Installed headers: /usr/include/asm/*.h, /usr/include/asm-generic/*.h, /usr/include/drm/*.h, /usr/include/

linux/*.h, /usr/include/mtd/*.h, /usr/include/rdma/*.h, /usr/include/scsi/*.h, /usr/include/
sound/*.h, /usr/include/video/*.h, and /usr/include/xen/*.h

Installed directories: /usr/include/asm, /usr/include/asm-generic, /usr/include/drm, /usr/include/linux, /usr/
include/mtd, /usr/include/rdma, /usr/include/scsi, /usr/include/sound, /usr/include/video,
and /usr/include/xen

Short Descriptions

/usr/include/asm/*.h The Linux API ASM Headers

/usr/include/asm-generic/*.h The Linux API ASM Generic Headers

/usr/include/drm/*.h The Linux API DRM Headers

/usr/include/linux/*.h The Linux API Linux Headers

/usr/include/mtd/*.h The Linux API MTD Headers

/usr/include/rdma/*.h The Linux API RDMA Headers

/usr/include/scsi/*.h The Linux API SCSI Headers

/usr/include/sound/*.h The Linux API Sound Headers

/usr/include/video/*.h The Linux API Video Headers

/usr/include/xen/*.h The Linux API Xen Headers

Linux From Scratch - Version 7.10

92

6.8. Man-pages-4.07
The Man-pages package contains over 2,200 man pages.

Approximate build time: less than 0.1 SBU
Required disk space: 26 MB

6.8.1. Installation of Man-pages
Install Man-pages by running:

make install

6.8.2. Contents of Man-pages
Installed files: various man pages

Short Descriptions

man pages Describe C programming language functions, important device files, and significant configuration files

Linux From Scratch - Version 7.10

93

6.9. Glibc-2.24
The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching
directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

Approximate build time: 17 SBU
Required disk space: 1.4 GB

6.9.1. Installation of Glibc

Note

The Glibc build system is self-contained and will install perfectly, even though the compiler specs file and
linker are still pointing to /tools. The specs and linker cannot be adjusted before the Glibc install because
the Glibc autoconf tests would give false results and defeat the goal of achieving a clean build.

Some of the Glibc programs use non-FHS compilant /var/db directory to store their runtime data. Apply the
following patch to make such programs store their runtime data in the FHS-compliant locations:

patch -Np1 -i ../glibc-2.24-fhs-1.patch

The Glibc documentation recommends building Glibc in a dedicated build directory:

mkdir -v build
cd build

Prepare Glibc for compilation:

../configure --prefix=/usr \
 --enable-kernel=2.6.32 \
 --enable-obsolete-rpc

Compile the package:

make

Important

In this section, the test suite for Glibc is considered critical. Do not skip it under any circumstance.

Generally a few tests do not pass, but you can generally ignore any of the test failures listed below. Now test the build
results:

make check

You will probably see some test failures. The Glibc test suite is somewhat dependent on the host system. This is a list
of the most common issues seen for this version of LFS:

• posix/tst-getaddrinfo4 will always fail due to not having the necessary networking applications when the tests are
run. posix/tst-getaddrinfo5 is also known to fail on some architectures.

• The rt/tst-cputimer1 and rt/tst-cpuclock2 tests have been known to fail. The reason is not completely understood,
but indications are that minor timing issues can trigger these failures.

• The math tests sometimes fail when running on systems where the CPU is not a relatively new Intel or AMD
processor.

Linux From Scratch - Version 7.10

94

• The nptl/tst-thread-affinity-{pthread,pthread2,sched} tests may fail for reasons that have not been determined.

• Other tests known to fail on some architectures are malloc/tst-malloc-usable and nptl/tst-cleanupx4.

Though it is a harmless message, the install stage of Glibc will complain about the absence of /etc/ld.so.conf.
Prevent this warning with:

touch /etc/ld.so.conf

Install the package:

make install

Install the configuration file and runtime directory for nscd:

cp -v ../nscd/nscd.conf /etc/nscd.conf
mkdir -pv /var/cache/nscd

Next, install the locales that can make the system respond in a different language. None of the locales are required, but
if some of them are missing, the test suites of future packages would skip important testcases.

Individual locales can be installed using the localedef program. E.g., the first localedef command below combines
the /usr/share/i18n/locales/cs_CZ charset-independent locale definition with the /usr/share/i18n/
charmaps/UTF-8.gz charmap definition and appends the result to the /usr/lib/locale/locale-
archive file. The following instructions will install the minimum set of locales necessary for the optimal coverage
of tests:

mkdir -pv /usr/lib/locale
localedef -i cs_CZ -f UTF-8 cs_CZ.UTF-8
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i de_DE -f UTF-8 de_DE.UTF-8
localedef -i en_GB -f UTF-8 en_GB.UTF-8
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH
localedef -i en_US -f ISO-8859-1 en_US
localedef -i en_US -f UTF-8 en_US.UTF-8
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i fr_FR -f UTF-8 fr_FR.UTF-8
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i it_IT -f UTF-8 it_IT.UTF-8
localedef -i ja_JP -f EUC-JP ja_JP
localedef -i ru_RU -f KOI8-R ru_RU.KOI8-R
localedef -i ru_RU -f UTF-8 ru_RU.UTF-8
localedef -i tr_TR -f UTF-8 tr_TR.UTF-8
localedef -i zh_CN -f GB18030 zh_CN.GB18030

In addition, install the locale for your own country, language and character set.

Linux From Scratch - Version 7.10

95

Alternatively, install all locales listed in the glibc-2.24/localedata/SUPPORTED file (it includes every locale
listed above and many more) at once with the following time-consuming command:

make localedata/install-locales

Then use the localedef command to create and install locales not listed in the glibc-2.24/localedata/
SUPPORTED file in the unlikely case you need them.

6.9.2. Configuring Glibc

6.9.2.1. Adding nsswitch.conf

The /etc/nsswitch.conf file needs to be created because the Glibc defaults do not work well in a networked
environment.

Create a new file /etc/nsswitch.conf by running the following:

cat > /etc/nsswitch.conf << "EOF"
Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: files
services: files
ethers: files
rpc: files

End /etc/nsswitch.conf
EOF

Linux From Scratch - Version 7.10

96

6.9.2.2. Adding time zone data

Install and set up the time zone data with the following:

tar -xf ../../tzdata2016f.tar.gz

ZONEINFO=/usr/share/zoneinfo
mkdir -pv $ZONEINFO/{posix,right}

for tz in etcetera southamerica northamerica europe africa antarctica \
 asia australasia backward pacificnew systemv; do
 zic -L /dev/null -d $ZONEINFO -y "sh yearistype.sh" ${tz}
 zic -L /dev/null -d $ZONEINFO/posix -y "sh yearistype.sh" ${tz}
 zic -L leapseconds -d $ZONEINFO/right -y "sh yearistype.sh" ${tz}
done

cp -v zone.tab zone1970.tab iso3166.tab $ZONEINFO
zic -d $ZONEINFO -p America/New_York
unset ZONEINFO

The meaning of the zic commands:

zic -L /dev/null ...

This creates posix time zones, without any leap seconds. It is conventional to put these in both zoneinfo and
zoneinfo/posix. It is necessary to put the POSIX time zones in zoneinfo, otherwise various test-suites
will report errors. On an embedded system, where space is tight and you do not intend to ever update the time
zones, you could save 1.9MB by not using the posix directory, but some applications or test-suites might produce
some failures.

zic -L leapseconds ...

This creates right time zones, including leap seconds. On an embedded system, where space is tight and you do
not intend to ever update the time zones, or care about the correct time, you could save 1.9MB by omitting the
right directory.

zic ... -p ...

This creates the posixrules file. We use New York because POSIX requires the daylight savings time rules
to be in accordance with US rules.

One way to determine the local time zone is to run the following script:

tzselect

After answering a few questions about the location, the script will output the name of the time zone (e.g., America/
Edmonton). There are also some other possible time zones listed in /usr/share/zoneinfo such as Canada/
Eastern or EST5EDT that are not identified by the script but can be used.

Then create the /etc/localtime file by running:

cp -v /usr/share/zoneinfo/<xxx> /etc/localtime

Replace <xxx> with the name of the time zone selected (e.g., Canada/Eastern).

Linux From Scratch - Version 7.10

97

6.9.2.3. Configuring the Dynamic Loader

By default, the dynamic loader (/lib/ld-linux.so.2) searches through /lib and /usr/lib for dynamic
libraries that are needed by programs as they are run. However, if there are libraries in directories other than /lib
and /usr/lib, these need to be added to the /etc/ld.so.conf file in order for the dynamic loader to find them.
Two directories that are commonly known to contain additional libraries are /usr/local/lib and /opt/lib, so
add those directories to the dynamic loader's search path.

Create a new file /etc/ld.so.conf by running the following:

cat > /etc/ld.so.conf << "EOF"
Begin /etc/ld.so.conf
/usr/local/lib
/opt/lib

EOF

If desired, the dynamic loader can also search a directory and include the contents of files found there. Generally the
files in this include directory are one line specifying the desired library path. To add this capability run the following
commands:

cat >> /etc/ld.so.conf << "EOF"
Add an include directory
include /etc/ld.so.conf.d/*.conf

EOF
mkdir -pv /etc/ld.so.conf.d

6.9.3. Contents of Glibc
Installed programs: catchsegv, gencat, getconf, getent, iconv, iconvconfig, ldconfig, ldd, lddlibc4, locale,

localedef, makedb, mtrace, nscd, pldd, rpcgen, sln, sotruss, sprof, tzselect, xtrace, zdump,
and zic

Installed libraries: ld-2.24.so, libBrokenLocale.{a,so}, libSegFault.so, libanl.{a,so}, libc.{a,so},
libc_nonshared.a, libcidn.so, libcrypt.{a,so}, libdl.{a,so}, libg.a, libieee.a, libm.
{a,so}, libmcheck.a, libmemusage.so, libnsl.{a,so}, libnss_compat.so, libnss_dns.so,
libnss_files.so, libnss_hesiod.so, libnss_nis.so, libnss_nisplus.so, libpthread.{a,so},
libpthread_nonshared.a, libresolv.{a,so}, librpcsvc.a, librt.{a,so}, libthread_db.so, and
libutil.{a,so}

Installed directories: /usr/include/arpa, /usr/include/bits, /usr/include/gnu, /usr/include/net, /usr/include/
netash, /usr/include/netatalk, /usr/include/netax25, /usr/include/neteconet, /usr/include/
netinet, /usr/include/netipx, /usr/include/netiucv, /usr/include/netpacket, /usr/include/
netrom, /usr/include/netrose, /usr/include/nfs, /usr/include/protocols, /usr/include/rpc, /
usr/include/rpcsvc, /usr/include/sys, /usr/lib/audit, /usr/lib/gconv, /usr/lib/locale, /usr/
libexec/getconf, /usr/share/i18n, /usr/share/zoneinfo, /var/cache/nscd, and /var/lib/
nss_db

Short Descriptions

catchsegv Can be used to create a stack trace when a program terminates with a segmentation fault

Linux From Scratch - Version 7.10

98

gencat Generates message catalogues

getconf Displays the system configuration values for file system specific variables

getent Gets entries from an administrative database

iconv Performs character set conversion

iconvconfig Creates fastloading iconv module configuration files

ldconfig Configures the dynamic linker runtime bindings

ldd Reports which shared libraries are required by each given program or shared library

lddlibc4 Assists ldd with object files

locale Prints various information about the current locale

localedef Compiles locale specifications

makedb Creates a simple database from textual input

mtrace Reads and interprets a memory trace file and displays a summary in human-readable format

nscd A daemon that provides a cache for the most common name service requests

pldd Lists dynamic shared objects used by running processes

rpcgen Generates C code to implement the Remote Procedure Call (RPC) protocol

sln A statically linked ln program

sotruss Traces shared library procedure calls of a specified command

sprof Reads and displays shared object profiling data

tzselect Asks the user about the location of the system and reports the corresponding time zone
description

xtrace Traces the execution of a program by printing the currently executed function

zdump The time zone dumper

zic The time zone compiler

ld-2.24.so The helper program for shared library executables

libBrokenLocale Used internally by Glibc as a gross hack to get broken programs (e.g., some Motif
applications) running. See comments in glibc-2.24/locale/broken_cur_max.c
for more information

libSegFault The segmentation fault signal handler, used by catchsegv

libanl An asynchronous name lookup library

libc The main C library

libcidn Used internally by Glibc for handling internationalized domain names in the
getaddrinfo() function

libcrypt The cryptography library

libdl The dynamic linking interface library

libg Dummy library containing no functions. Previously was a runtime library for g++

libieee Linking in this module forces error handling rules for math functions as defined by the Institute
of Electrical and Electronic Engineers (IEEE). The default is POSIX.1 error handling

Linux From Scratch - Version 7.10

99

libm The mathematical library

libmcheck Turns on memory allocation checking when linked to

libmemusage Used by memusage to help collect information about the memory usage of a program

libnsl The network services library

libnss The Name Service Switch libraries, containing functions for resolving host names, user names,
group names, aliases, services, protocols, etc.

libpthread The POSIX threads library

libresolv Contains functions for creating, sending, and interpreting packets to the Internet domain name
servers

librpcsvc Contains functions providing miscellaneous RPC services

librt Contains functions providing most of the interfaces specified by the POSIX.1b Realtime
Extension

libthread_db Contains functions useful for building debuggers for multi-threaded programs

libutil Contains code for “standard” functions used in many different Unix utilities

Linux From Scratch - Version 7.10

100

6.10. Adjusting the Toolchain
Now that the final C libraries have been installed, it is time to adjust the toolchain so that it will link any newly compiled
program against these new libraries.

First, backup the /tools linker, and replace it with the adjusted linker we made in chapter 5. We'll also create a link
to its counterpart in /tools/$(uname -m)-pc-linux-gnu/bin:

mv -v /tools/bin/{ld,ld-old}
mv -v /tools/$(uname -m)-pc-linux-gnu/bin/{ld,ld-old}
mv -v /tools/bin/{ld-new,ld}
ln -sv /tools/bin/ld /tools/$(uname -m)-pc-linux-gnu/bin/ld

Next, amend the GCC specs file so that it points to the new dynamic linker. Simply deleting all instances of “/tools”
should leave us with the correct path to the dynamic linker. Also adjust the specs file so that GCC knows where to find
the correct headers and Glibc start files. A sed command accomplishes this:

gcc -dumpspecs | sed -e 's@/tools@@g' \
 -e '/*startfile_prefix_spec:/{n;s@.*@/usr/lib/ @}' \
 -e '/*cpp:/{n;s@$@ -isystem /usr/include@}' > \
 `dirname $(gcc --print-libgcc-file-name)`/specs

It is a good idea to visually inspect the specs file to verify the intended change was actually made.

It is imperative at this point to ensure that the basic functions (compiling and linking) of the adjusted toolchain are
working as expected. To do this, perform the following sanity checks:

echo 'int main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

There should be no errors, and the output of the last command will be (allowing for platform-specific differences in
dynamic linker name):

[Requesting program interpreter: /lib/ld-linux.so.2]

Note that /lib is now the prefix of our dynamic linker.

Note

On 64-bit systems the interpreter should be /lib64/ld-linux-x86-64.so.2.

Now make sure that we're setup to use the correct start files:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

The output of the last command should be:

/usr/lib/crt1.o succeeded
/usr/lib/crti.o succeeded
/usr/lib/crtn.o succeeded

Linux From Scratch - Version 7.10

101

Note

On 64-bit systems, the path above will be /usr/lib/gcc/x86_64-unknown-linux-gnu/5.3.0/../../../../lib64/. This
reduces to /usr/lib64 and /usr/lib64 is a symlink that points to /usr/lib.

Verify that the compiler is searching for the correct header files:

grep -B1 '^ /usr/include' dummy.log

This command should return the following output:

#include <...> search starts here:
 /usr/include

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

References to paths that have components with '-linux-gnu' should be ignored, but otherwise the output of the last
command should be:

SEARCH_DIR("/usr/lib")
SEARCH_DIR("/lib");

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

The output of the last command (allowing for a lib64 directory on 64-bit hosts) should be:

attempt to open /lib/libc.so.6 succeeded

Lastly, make sure GCC is using the correct dynamic linker:

grep found dummy.log

The output of the last command should be (allowing for platform-specific differences in dynamic linker name and a
lib64 directory on 64-bit hosts):

found ld-linux.so.2 at /lib/ld-linux.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate
and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went
wrong with the specs file adjustment. Any issues will need to be resolved before continuing on with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Linux From Scratch - Version 7.10

102

6.11. Zlib-1.2.8
The Zlib package contains compression and decompression routines used by some programs.

Approximate build time: less than 0.1 SBU
Required disk space: 4.0 MB

6.11.1. Installation of Zlib
Prepare Zlib for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

The shared library needs to be moved to /lib, and as a result the .so file in /usr/lib will need to be recreated:

mv -v /usr/lib/libz.so.* /lib
ln -sfv ../../lib/$(readlink /usr/lib/libz.so) /usr/lib/libz.so

6.11.2. Contents of Zlib
Installed libraries: libz.{a,so}

Short Descriptions

libz Contains compression and decompression functions used by some programs

Linux From Scratch - Version 7.10

103

6.12. File-5.28
The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.1 SBU
Required disk space: 15 MB

6.12.1. Installation of File
Prepare File for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.12.2. Contents of File
Installed programs: file
Installed library: libmagic.so

Short Descriptions

file Tries to classify each given file; it does this by performing several tests—file system tests, magic number
tests, and language tests

libmagic Contains routines for magic number recognition, used by the file program

Linux From Scratch - Version 7.10

104

6.13. Binutils-2.27
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 2.5 SBU
Required disk space: 488 MB

6.13.1. Installation of Binutils
Verify that the PTYs are working properly inside the chroot environment by performing a simple test:

expect -c "spawn ls"

This command should output the following:

spawn ls

If, instead, the output includes the message below, then the environment is not set up for proper PTY operation. This
issue needs to be resolved before running the test suites for Binutils and GCC:

The system has no more ptys.
Ask your system administrator to create more.

The Binutils documentation recommends building Binutils in a dedicated build directory:

mkdir -v build
cd build

Prepare Binutils for compilation:

../configure --prefix=/usr \
 --enable-shared \
 --disable-werror

Compile the package:

make tooldir=/usr

The meaning of the make parameter:

tooldir=/usr
Normally, the tooldir (the directory where the executables will ultimately be located) is set to $(exec_
prefix)/$(target_alias). For example, x86_64 machines would expand that to /usr/x86_64-
unknown-linux-gnu. Because this is a custom system, this target-specific directory in /usr is not required.
$(exec_prefix)/$(target_alias) would be used if the system was used to cross-compile (for example,
compiling a package on an Intel machine that generates code that can be executed on PowerPC machines).

Important

The test suite for Binutils in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make -k check

Linux From Scratch - Version 7.10

105

Install the package:

make tooldir=/usr install

6.13.2. Contents of Binutils
Installed programs: addr2line, ar, as, c++filt, elfedit, gprof, ld, ld.bfd, nm, objcopy, objdump, ranlib, readelf,

size, strings, and strip
Installed libraries: libbfd.{a,so} and libopcodes.{a,so}
Installed directory: /usr/lib/ldscripts

Short Descriptions

addr2line Translates program addresses to file names and line numbers; given an address and the name of an
executable, it uses the debugging information in the executable to determine which source file and
line number are associated with the address

ar Creates, modifies, and extracts from archives

as An assembler that assembles the output of gcc into object files

c++filt Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from
clashing

elfedit Updates the ELF header of ELF files

gprof Displays call graph profile data

ld A linker that combines a number of object and archive files into a single file, relocating their data
and tying up symbol references

ld.bfd Hard link to ld

nm Lists the symbols occurring in a given object file

objcopy Translates one type of object file into another

objdump Displays information about the given object file, with options controlling the particular information
to display; the information shown is useful to programmers who are working on the compilation tools

ranlib Generates an index of the contents of an archive and stores it in the archive; the index lists all of the
symbols defined by archive members that are relocatable object files

readelf Displays information about ELF type binaries

size Lists the section sizes and the total size for the given object files

strings Outputs, for each given file, the sequences of printable characters that are of at least the specified
length (defaulting to four); for object files, it prints, by default, only the strings from the initializing
and loading sections while for other types of files, it scans the entire file

strip Discards symbols from object files

libbfd The Binary File Descriptor library

libopcodes A library for dealing with opcodes—the “readable text” versions of instructions for the processor; it
is used for building utilities like objdump

Linux From Scratch - Version 7.10

106

6.14. GMP-6.1.1
The GMP package contains math libraries. These have useful functions for arbitrary precision arithmetic.

Approximate build time: 1.2 SBU
Required disk space: 59 MB

6.14.1. Installation of GMP

Note

If you are building for 32-bit x86, but you have a CPU which is capable of running 64-bit code and you
have specified CFLAGS in the environment, the configure script will attempt to configure for 64-bits and fail.
Avoid this by invoking the configure command below with

ABI=32 ./configure ...

Prepare GMP for compilation:

./configure --prefix=/usr \
 --enable-cxx \
 --disable-static \
 --docdir=/usr/share/doc/gmp-6.1.1

The meaning of the new configure options:

--enable-cxx

This parameter enables C++ support

--docdir=/usr/share/doc/gmp-6.1.1

This variable specifies the correct place for the documentation.

Compile the package and generate the HTML documentation:

make
make html

Important

The test suite for GMP in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make check 2>&1 | tee gmp-check-log

Caution

The code in gmp is highly optimized for the processor where it is built. Occasionally, the code that detects
the processor misidentifies the system capabilities and there will be errors in the tests or other applications
using the gmp libraries with the message "Illegal instruction". In this case, gmp should be reconfigured with
the option --build=x86_64-unknown-linux-gnu and rebuilt.

Linux From Scratch - Version 7.10

107

Ensure that all 190 tests in the test suite passed. Check the results by issuing the following command:

awk '/# PASS:/{total+=$3} ; END{print total}' gmp-check-log

Install the package and its documentation:

make install
make install-html

6.14.2. Contents of GMP
Installed Libraries: libgmp.so and libgmpxx.so
Installed directory: /usr/share/doc/gmp-6.1.1

Short Descriptions

libgmp Contains precision math functions

libgmpxx Contains C++ precision math functions

Linux From Scratch - Version 7.10

108

6.15. MPFR-3.1.4
The MPFR package contains functions for multiple precision math.

Approximate build time: 0.8 SBU
Required disk space: 45 MB

6.15.1. Installation of MPFR
Prepare MPFR for compilation:

./configure --prefix=/usr \
 --disable-static \
 --enable-thread-safe \
 --docdir=/usr/share/doc/mpfr-3.1.4

Compile the package and generate the HTML documentation:

make
make html

Important

The test suite for MPFR in this section is considered critical. Do not skip it under any circumstances.

Test the results and ensure that all tests passed:

make check

Install the package and its documentation:

make install
make install-html

6.15.2. Contents of MPFR
Installed Libraries: libmpfr.so
Installed directory: /usr/share/doc/mpfr-3.1.4

Short Descriptions

libmpfr Contains multiple-precision math functions

Linux From Scratch - Version 7.10

109

6.16. MPC-1.0.3
The MPC package contains a library for the arithmetic of complex numbers with arbitrarily high precision and correct
rounding of the result.

Approximate build time: 0.3 SBU
Required disk space: 17 MB

6.16.1. Installation of MPC
Prepare MPC for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/mpc-1.0.3

Compile the package and generate the HTML documentation:

make
make html

To test the results, issue:

make check

Install the package and its documentation:

make install
make install-html

6.16.2. Contents of MPC
Installed Libraries: libmpc.so
Installed Directory: /usr/share/doc/mpc-1.0.3

Short Descriptions

libmpc Contains complex math functions

Linux From Scratch - Version 7.10

110

6.17. GCC-6.2.0
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 79 SBU (with tests)
Required disk space: 3.3 GB

6.17.1. Installation of GCC
The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd build

Prepare GCC for compilation:

SED=sed \
../configure --prefix=/usr \
 --enable-languages=c,c++ \
 --disable-multilib \
 --disable-bootstrap \
 --with-system-zlib

Note that for other languages, there are some prerequisites that are not yet available. See the BLFS Book for instructions
on how to build all of GCC's supported languages.

The meaning of the new configure option:

SED=sed
Setting this environment variable prevents a hard-coded path to /tools/bin/sed.

--with-system-zlib
This switch tells GCC to link to the system installed copy of the Zlib library, rather than its own internal copy.

Compile the package:

make

Important

In this section, the test suite for GCC is considered critical. Do not skip it under any circumstance.

One set of tests in the GCC test suite is known to exhaust the stack, so increase the stack size prior to running the tests:

ulimit -s 32768

Test the results, but do not stop at errors:

make -k check

To receive a summary of the test suite results, run:

../contrib/test_summary

For only the summaries, pipe the output through grep -A7 Summ.

http://www.linuxfromscratch.org/blfs/view/7.10/general/gcc.html

Linux From Scratch - Version 7.10

111

Results can be compared with those located at http://www.linuxfromscratch.org/lfs/build-logs/7.10/ and http://gcc.gnu.
org/ml/gcc-testresults/.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have
not resolved them yet. In particular, two tests in the libstdc++ test suite are known to fail when running as the root user
as we do here. Unless the test results are vastly different from those at the above URL, it is safe to continue.

Note

On some systems, numerous test failures (over 1100 unexpected failures out of over 200,000 tests) have been
reported. These failures in gcc.target/i386/mpx/ are related to the Intel MPX (Memory Protection
Extensions) tests and failures are due to the kernel configuration or the specific CPU architecture. These test
failures are harmless and can be ignored.

Install the package:

make install

Create a symlink required by the FHS for "historical" reasons.

ln -sv ../usr/bin/cpp /lib

Many packages use the name cc to call the C compiler. To satisfy those packages, create a symlink:

ln -sv gcc /usr/bin/cc

Add a compatibility symlink to enable building programs with Link Time Optimization (LTO):

install -v -dm755 /usr/lib/bfd-plugins
ln -sfv ../../libexec/gcc/$(gcc -dumpmachine)/6.2.0/liblto_plugin.so \
 /usr/lib/bfd-plugins/

Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as expected.
We do this by performing the same sanity checks as we did earlier in the chapter:

echo 'int main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

There should be no errors, and the output of the last command will be (allowing for platform-specific differences in
dynamic linker name):

[Requesting program interpreter: /lib/ld-linux.so.2]

Now make sure that we're setup to use the correct start files:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

The output of the last command should be:

/usr/lib/gcc/i686-pc-linux-gnu/6.2.0/../../../crt1.o succeeded
/usr/lib/gcc/i686-pc-linux-gnu/6.2.0/../../../crti.o succeeded
/usr/lib/gcc/i686-pc-linux-gnu/6.2.0/../../../crtn.o succeeded

http://www.linuxfromscratch.org/lfs/build-logs/7.10/
http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/ml/gcc-testresults/
http://refspecs.linuxfoundation.org/FHS_3.0/fhs/ch03s09.html

Linux From Scratch - Version 7.10

112

Depending on your machine architecture, the above may differ slightly, the difference usually being the name of the
directory after /usr/lib/gcc. If your machine is a 64-bit system, you may also see a directory named lib64
towards the end of the string. The important thing to look for here is that gcc has found all three crt*.o files under
the /usr/lib directory.

Verify that the compiler is searching for the correct header files:

grep -B4 '^ /usr/include' dummy.log

This command should return the following output:

#include <...> search starts here:
 /usr/lib/gcc/i686-pc-linux-gnu/6.2.0/include
 /usr/local/include
 /usr/lib/gcc/i686-pc-linux-gnu/6.2.0/include-fixed
 /usr/include

Again, note that the directory named after your target triplet may be different than the above, depending on your
architecture.

Note

As of version 4.3.0, GCC now unconditionally installs the limits.h file into the private include-fixed
directory, and that directory is required to be in place.

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

References to paths that have components with '-linux-gnu' should be ignored, but otherwise the output of the last
command should be:

SEARCH_DIR("/usr/i686-pc-linux-gnu/lib32")
SEARCH_DIR("/usr/local/lib32")
SEARCH_DIR("/lib32")
SEARCH_DIR("/usr/lib32")
SEARCH_DIR("/usr/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

A 64-bit system may see a few different directories. For example, here is the output from an x86_64 machine:

SEARCH_DIR("/usr/x86_64-unknown-linux-gnu/lib64")
SEARCH_DIR("/usr/local/lib64")
SEARCH_DIR("/lib64")
SEARCH_DIR("/usr/lib64")
SEARCH_DIR("/usr/x86_64-unknown-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

Linux From Scratch - Version 7.10

113

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

The output of the last command (allowing for a lib64 directory on 64-bit hosts) should be:

attempt to open /lib/libc.so.6 succeeded

Lastly, make sure GCC is using the correct dynamic linker:

grep found dummy.log

The output of the last command should be (allowing for platform-specific differences in dynamic linker name and a
lib64 directory on 64-bit hosts):

found ld-linux.so.2 at /lib/ld-linux.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate
and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went
wrong with the specs file adjustment. Any issues will need to be resolved before continuing on with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Finally, move a misplaced file:

mkdir -pv /usr/share/gdb/auto-load/usr/lib
mv -v /usr/lib/*gdb.py /usr/share/gdb/auto-load/usr/lib

6.17.2. Contents of GCC
Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gcc-ar, gcc-nm, gcc-ranlib, and gcov
Installed libraries: libasan.{a,so}, libatomic.{a,so}, libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a, libgomp.

{a,so}, libiberty.a, libitm.{a,so}, liblto_plugin.so, libquadmath.{a,so}, libssp.{a,so},
libssp_nonshared.a, libstdc++.{a,so}, libsupc++.a, and libtsan.{a,so}

Installed directories: /usr/include/c++, /usr/lib/gcc, /usr/libexec/gcc, and /usr/share/gcc-6.2.0

Short Descriptions

c++ The C++ compiler

cc The C compiler

cpp The C preprocessor; it is used by the compiler to expand the #include, #define, and similar
statements in the source files

g++ The C++ compiler

gcc The C compiler

gcc-ar A wrapper around ar that adds a plugin to the command line. This program is only used to add
"link time optimization" and is not useful with the default build options

gcc-nm A wrapper around nm that adds a plugin to the command line. This program is only used to add
"link time optimization" and is not useful with the default build options

Linux From Scratch - Version 7.10

114

gcc-ranlib A wrapper around ranlib that adds a plugin to the command line. This program is only used to
add "link time optimization" and is not useful with the default build options

gcov A coverage testing tool; it is used to analyze programs to determine where optimizations will
have the most effect

libasan The Address Sanitizer runtime library

libgcc Contains run-time support for gcc

libgcov This library is linked in to a program when GCC is instructed to enable profiling

libgomp GNU implementation of the OpenMP API for multi-platform shared-memory parallel
programming in C/C++ and Fortran

libiberty Contains routines used by various GNU programs, including getopt, obstack, strerror, strtol,
and strtoul

liblto_plugin GCC's Link Time Optimization (LTO) plugin allows GCC to perform optimizations across
compilation units

libquadmath GCC Quad Precision Math Library API

libssp Contains routines supporting GCC's stack-smashing protection functionality

libstdc++ The standard C++ library

libsupc++ Provides supporting routines for the C++ programming language

libtsan The Thread Sanitizer runtime library

Linux From Scratch - Version 7.10

115

6.18. Bzip2-1.0.6
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2
yields a much better compression percentage than with the traditional gzip.

Approximate build time: less than 0.1 SBU
Required disk space: 4.9 MB

6.18.1. Installation of Bzip2
Apply a patch that will install the documentation for this package:

patch -Np1 -i ../bzip2-1.0.6-install_docs-1.patch

The following command ensures installation of symbolic links are relative:

sed -i 's@\(ln -s -f \)$(PREFIX)/bin/@\1@' Makefile

Ensure the man pages are installed into the correct location:

sed -i "s@(PREFIX)/man@(PREFIX)/share/man@g" Makefile

Prepare Bzip2 for compilation with:

make -f Makefile-libbz2_so
make clean

The meaning of the make parameter:

-f Makefile-libbz2_so
This will cause Bzip2 to be built using a different Makefile file, in this case the Makefile-libbz2_so file,
which creates a dynamic libbz2.so library and links the Bzip2 utilities against it.

Compile and test the package:

make

Install the programs:

make PREFIX=/usr install

Install the shared bzip2 binary into the /bin directory, make some necessary symbolic links, and clean up:

cp -v bzip2-shared /bin/bzip2
cp -av libbz2.so* /lib
ln -sv ../../lib/libbz2.so.1.0 /usr/lib/libbz2.so
rm -v /usr/bin/{bunzip2,bzcat,bzip2}
ln -sv bzip2 /bin/bunzip2
ln -sv bzip2 /bin/bzcat

6.18.2. Contents of Bzip2
Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp (link to bzdiff), bzdiff, bzegrep (link

to bzgrep), bzfgrep (link to bzgrep), bzgrep, bzip2, bzip2recover, bzless (link to bzmore),
and bzmore

Installed libraries: libbz2.{a,so}
Installed directory: /usr/share/doc/bzip2-1.0.6

Linux From Scratch - Version 7.10

116

Short Descriptions

bunzip2 Decompresses bzipped files

bzcat Decompresses to standard output

bzcmp Runs cmp on bzipped files

bzdiff Runs diff on bzipped files

bzegrep Runs egrep on bzipped files

bzfgrep Runs fgrep on bzipped files

bzgrep Runs grep on bzipped files

bzip2 Compresses files using the Burrows-Wheeler block sorting text compression algorithm with
Huffman coding; the compression rate is better than that achieved by more conventional
compressors using “Lempel-Ziv” algorithms, like gzip

bzip2recover Tries to recover data from damaged bzipped files

bzless Runs less on bzipped files

bzmore Runs more on bzipped files

libbz2 The library implementing lossless, block-sorting data compression, using the Burrows-Wheeler
algorithm

Linux From Scratch - Version 7.10

117

6.19. Pkg-config-0.29.1
The pkg-config package contains a tool for passing the include path and/or library paths to build tools during the
configure and make file execution.

Approximate build time: 0.3 SBU
Required disk space: 28 MB

6.19.1. Installation of Pkg-config
Prepare Pkg-config for compilation:

./configure --prefix=/usr \
 --with-internal-glib \
 --disable-compile-warnings \
 --disable-host-tool \
 --docdir=/usr/share/doc/pkg-config-0.29.1

The meaning of the new configure options:

--with-internal-glib
This will allow pkg-config to use its internal version of Glib because an external version is not available in LFS.

--disable-compile-warnings
This option prevents the build system from using compiler flags which cause build failure when building with
GCC 6.

--disable-host-tool
This option disables the creation of an undesired hard link to the pkg-config program.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.19.2. Contents of Pkg-config
Installed program: pkg-config
Installed directory: /usr/share/doc/pkg-config-0.29.1

Short Descriptions

pkg-config returns meta information for the specified library or package

Linux From Scratch - Version 7.10

118

6.20. Ncurses-6.0
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.4 SBU
Required disk space: 39 MB

6.20.1. Installation of Ncurses
Don't install a static library that is not handled by configure:

sed -i '/LIBTOOL_INSTALL/d' c++/Makefile.in

Prepare Ncurses for compilation:

./configure --prefix=/usr \
 --mandir=/usr/share/man \
 --with-shared \
 --without-debug \
 --without-normal \
 --enable-pc-files \
 --enable-widec

The meaning of the new configure options:

--enable-widec
This switch causes wide-character libraries (e.g., libncursesw.so.6.0) to be built instead of normal ones
(e.g., libncurses.so.6.0). These wide-character libraries are usable in both multibyte and traditional 8-bit
locales, while normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are source-
compatible, but not binary-compatible.

--enable-pc-files
This switch generates and installs .pc files for pkg-config.

--without-normal
This switch disables building and installing most static libraries.

Compile the package:

make

This package has a test suite, but it can only be run after the package has been installed. The tests reside in the test/
directory. See the README file in that directory for further details.

Install the package:

make install

Move the shared libraries to the /lib directory, where they are expected to reside:

mv -v /usr/lib/libncursesw.so.6* /lib

Because the libraries have been moved, one symlink points to a non-existent file. Recreate it:

ln -sfv ../../lib/$(readlink /usr/lib/libncursesw.so) /usr/lib/libncursesw.so

Linux From Scratch - Version 7.10

119

Many applications still expect the linker to be able to find non-wide-character Ncurses libraries. Trick such applications
into linking with wide-character libraries by means of symlinks and linker scripts:

for lib in ncurses form panel menu ; do
 rm -vf /usr/lib/lib${lib}.so
 echo "INPUT(-l${lib}w)" > /usr/lib/lib${lib}.so
 ln -sfv ${lib}w.pc /usr/lib/pkgconfig/${lib}.pc
done

Finally, make sure that old applications that look for -lcurses at build time are still buildable:

rm -vf /usr/lib/libcursesw.so
echo "INPUT(-lncursesw)" > /usr/lib/libcursesw.so
ln -sfv libncurses.so /usr/lib/libcurses.so

If desired, install the Ncurses documentation:

mkdir -v /usr/share/doc/ncurses-6.0
cp -v -R doc/* /usr/share/doc/ncurses-6.0

Note

The instructions above don't create non-wide-character Ncurses libraries since no package installed by
compiling from sources would link against them at runtime. However, the only known binary-only
applications that link against non-wide-character Ncurses libraries require version 5. If you must have such
libraries because of some binary-only application or to be compliant with LSB, build the package again with
the following commands:

make distclean
./configure --prefix=/usr \
 --with-shared \
 --without-normal \
 --without-debug \
 --without-cxx-binding \
 --with-abi-version=5
make sources libs
cp -av lib/lib*.so.5* /usr/lib

6.20.2. Contents of Ncurses
Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), ncursesw6-config, reset (link

to tset), tabs, tic, toe, tput, and tset
Installed libraries: libcursesw.so (symlink and linker script to libncursesw.so), libformw.so,

libmenuw.so, libncursesw.so, libncurses++w.a, libpanelw.so, and their non-wide-
character counterparts without "w" in the library names.

Installed directories: /usr/share/tabset, /usr/share/terminfo, and /usr/share/doc/ncurses-6.0

Short Descriptions

captoinfo Converts a termcap description into a terminfo description

Linux From Scratch - Version 7.10

120

clear Clears the screen, if possible

infocmp Compares or prints out terminfo descriptions

infotocap Converts a terminfo description into a termcap description

ncursesw6-config Provides configuration information for ncurses

reset Reinitializes a terminal to its default values

tabs Clears and sets tab stops on a terminal

tic The terminfo entry-description compiler that translates a terminfo file from source format
into the binary format needed for the ncurses library routines [A terminfo file contains
information on the capabilities of a certain terminal.]

toe Lists all available terminal types, giving the primary name and description for each

tput Makes the values of terminal-dependent capabilities available to the shell; it can also be used
to reset or initialize a terminal or report its long name

tset Can be used to initialize terminals

libcursesw A link to libncursesw

libncursesw Contains functions to display text in many complex ways on a terminal screen; a good
example of the use of these functions is the menu displayed during the kernel's make
menuconfig

libformw Contains functions to implement forms

libmenuw Contains functions to implement menus

libpanelw Contains functions to implement panels

Linux From Scratch - Version 7.10

121

6.21. Attr-2.4.47
The attr package contains utilities to administer the extended attributes on filesystem objects.

Approximate build time: less than 0.1 SBU
Required disk space: 3.3 MB

6.21.1. Installation of Attr
Modify the documentation directory so that it is a versioned directory:

sed -i -e 's|/@pkg_name@|&-@pkg_version@|' include/builddefs.in

Prevent installation of manual pages that were already installed by the man pages package:

sed -i -e "/SUBDIRS/s|man[25]||g" man/Makefile

Prepare Attr for compilation:

./configure --prefix=/usr \
 --bindir=/bin \
 --disable-static

Compile the package:

make

The tests need to be run on a filesystem that supports extended attributes such as the ext2, ext3, or ext4 filesystems. The
tests are also known to fail if running multiple simultaneous tests (-j option greater than 1). To test the results, issue:

make -j1 tests root-tests

Install the package:

make install install-dev install-lib
chmod -v 755 /usr/lib/libattr.so

The shared library needs to be moved to /lib, and as a result the .so file in /usr/lib will need to be recreated:

mv -v /usr/lib/libattr.so.* /lib
ln -sfv ../../lib/$(readlink /usr/lib/libattr.so) /usr/lib/libattr.so

6.21.2. Contents of Attr
Installed programs: attr, getfattr, and setattr
Installed library: libattr.so
Installed directories: /usr/include/attr and /usr/share/doc/attr-2.4.47

Short Descriptions

attr Extends attributes on filesystem objects

getfattr Gets the extended attributes of filesystem objects

setattr Sets the extended attributes of filesystem objects

Linux From Scratch - Version 7.10

122

libattr Contains the libbrary functions for manipulating extended attributes

Linux From Scratch - Version 7.10

123

6.22. Acl-2.2.52
The Acl package contains utilities to administer Access Control Lists, which are used to define more fine-grained
discretionary access rights for files and directories.

Approximate build time: less than 0.1 SBU
Required disk space: 4.8 MB

6.22.1. Installation of Acl

Modify the documentation directory so that it is a versioned directory:

sed -i -e 's|/@pkg_name@|&-@pkg_version@|' include/builddefs.in

Fix some broken tests:

sed -i "s:| sed.*::g" test/{sbits-restore,cp,misc}.test

Additionally, fix a bug that causes getfacl -e to segfault on overly long group name:

sed -i -e "/TABS-1;/a if (x > (TABS-1)) x = (TABS-1);" \
 libacl/__acl_to_any_text.c

Prepare Acl for compilation:

./configure --prefix=/usr \
 --bindir=/bin \
 --disable-static \
 --libexecdir=/usr/lib

Compile the package:

make

The Acl tests need to be run on a filesystem that supports access controls after Coreutils has been built with the Acl
libraries. If desired, return to this package and run make -j1 tests after Coreutils has been built later in this chapter.

Install the package:

make install install-dev install-lib
chmod -v 755 /usr/lib/libacl.so

The shared library needs to be moved to /lib, and as a result the .so file in /usr/lib will need to be recreated:

mv -v /usr/lib/libacl.so.* /lib
ln -sfv ../../lib/$(readlink /usr/lib/libacl.so) /usr/lib/libacl.so

6.22.2. Contents of Acl
Installed programs: chacl, getfacl, and setacl
Installed library: libacl.so
Installed directories: /usr/include/acl and /usr/share/doc/acl-2.2.52

Linux From Scratch - Version 7.10

124

Short Descriptions

chacl Changes the access control list of a file or directory

getfacl Gets file access control lists

setacl Sets file access control lists

libacl Contains the library functions for manipulating Access Control Lists

Linux From Scratch - Version 7.10

125

6.23. Libcap-2.25
The Libcap package implements the user-space interfaces to the POSIX 1003.1e capabilities available in Linux kernels.
These capabilities are a partitioning of the all powerful root privilege into a set of distinct privileges.

Approximate build time: less than 0.1 SBU
Required disk space: 1.3 MB

6.23.1. Installation of Libcap
Prevent a static library from being installed:

sed -i '/install.*STALIBNAME/d' libcap/Makefile

Compile the package:

make

This package does not come with a test suite.

Install the package:

make RAISE_SETFCAP=no prefix=/usr install
chmod -v 755 /usr/lib/libcap.so

The meaning of the make option:

RAISE_SETFCAP=no
This parameter skips trying to use setcap on itself. This avoids an installation error if the kernel or file system
does not support extended capabilities.

The shared library needs to be moved to /lib, and as a result the .so file in /usr/lib will need to be recreated:

mv -v /usr/lib/libcap.so.* /lib
ln -sfv ../../lib/$(readlink /usr/lib/libcap.so) /usr/lib/libcap.so

6.23.2. Contents of Libcap
Installed programs: capsh, getcap, getpcaps, and setcap
Installed library: libcap.so

Short Descriptions

capsh A shell wrapper to explore and constrain capability support

getcap Examines file capabilities

getpcaps Displays the capabilities on the queried process(es)

libcap Contains the library functions for manipulating POSIX 1003.1e capabilities

Linux From Scratch - Version 7.10

126

6.24. Sed-4.2.2
The Sed package contains a stream editor.

Approximate build time: 0.2 SBU
Required disk space: 10.7 MB

6.24.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/usr --bindir=/bin --htmldir=/usr/share/doc/sed-4.2.2

The meaning of the new configure option:

--htmldir
This sets the installation directory for the HTML documentation.

Compile the package and generate the HTML documentation:

make
make html

To test the results, issue:

make check

Install the package and its documentation:

make install
make -C doc install-html

6.24.2. Contents of Sed
Installed program: sed
Installed directory: /usr/share/doc/sed-4.2.2

Short Descriptions

sed Filters and transforms text files in a single pass

Linux From Scratch - Version 7.10

127

6.25. Shadow-4.2.1
The Shadow package contains programs for handling passwords in a secure way.

Approximate build time: 0.2 SBU
Required disk space: 42 MB

6.25.1. Installation of Shadow

Note

If you would like to enforce the use of strong passwords, refer to http://www.linuxfromscratch.org/blfs/view/
7.10/postlfs/cracklib.html for installing CrackLib prior to building Shadow. Then add --with-libcrack
to the configure command below.

Disable the installation of the groups program and its man pages, as Coreutils provides a better version. Also Prevent
the installation of manual pages that were already installed by the man pages package:

sed -i 's/groups$(EXEEXT) //' src/Makefile.in
find man -name Makefile.in -exec sed -i 's/groups\.1 / /' {} \;
find man -name Makefile.in -exec sed -i 's/getspnam\.3 / /' {} \;
find man -name Makefile.in -exec sed -i 's/passwd\.5 / /' {} \;

Instead of using the default crypt method, use the more secure SHA-512 method of password encryption, which also
allows passwords longer than 8 characters. It is also necessary to change the obsolete /var/spool/mail location
for user mailboxes that Shadow uses by default to the /var/mail location used currently:

sed -i -e 's@#ENCRYPT_METHOD DES@ENCRYPT_METHOD SHA512@' \
 -e 's@/var/spool/mail@/var/mail@' etc/login.defs

Note

If you chose to build Shadow with Cracklib support, run the following:

sed -i 's@DICTPATH.*@DICTPATH\t/lib/cracklib/pw_dict@' etc/login.defs

Make a minor change to make the default useradd consistent with the LFS groups file:

sed -i 's/1000/999/' etc/useradd

Prepare Shadow for compilation:

./configure --sysconfdir=/etc --with-group-name-max-length=32

The meaning of the configure option:

--with-group-name-max-length=32
The maximum user name is 32 characters. Make the maximum group name the same.

Compile the package:

make

http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/cracklib.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/cracklib.html

Linux From Scratch - Version 7.10

128

This package does not come with a test suite.

Install the package:

make install

Move a misplaced program to its proper location:

mv -v /usr/bin/passwd /bin

6.25.2. Configuring Shadow
This package contains utilities to add, modify, and delete users and groups; set and change their passwords; and perform
other administrative tasks. For a full explanation of what password shadowing means, see the doc/HOWTO file within
the unpacked source tree. If using Shadow support, keep in mind that programs which need to verify passwords (display
managers, FTP programs, pop3 daemons, etc.) must be Shadow-compliant. That is, they need to be able to work with
shadowed passwords.

To enable shadowed passwords, run the following command:

pwconv

To enable shadowed group passwords, run:

grpconv

Shadow's stock configuration for the useradd utility has a few caveats that need some explanation. First, the default
action for the useradd utility is to create the user and a group of the same name as the user. By default the user ID (UID)
and group ID (GID) numbers will begin with 1000. This means if you don't pass parameters to useradd, each user will
be a member of a unique group on the system. If this behavior is undesirable, you'll need to pass the -g parameter
to useradd. The default parameters are stored in the /etc/default/useradd file. You may need to modify two
parameters in this file to suit your particular needs.

/etc/default/useradd Parameter Explanations

GROUP=1000
This parameter sets the beginning of the group numbers used in the /etc/group file. You can modify it to anything
you desire. Note that useradd will never reuse a UID or GID. If the number identified in this parameter is used,
it will use the next available number after this. Note also that if you don't have a group 1000 on your system the
first time you use useradd without the -g parameter, you'll get a message displayed on the terminal that says:
useradd: unknown GID 1000. You may disregard this message and group number 1000 will be used.

CREATE_MAIL_SPOOL=yes
This parameter causes useradd to create a mailbox file for the newly created user. useradd will make the group
ownership of this file to the mail group with 0660 permissions. If you would prefer that these mailbox files are
not created by useradd, issue the following command:

sed -i 's/yes/no/' /etc/default/useradd

6.25.3. Setting the root password
Choose a password for user root and set it by running:

passwd root

Linux From Scratch - Version 7.10

129

6.25.4. Contents of Shadow
Installed programs: chage, chfn, chgpasswd, chpasswd, chsh, expiry, faillog, gpasswd, groupadd, groupdel,

groupmems, groupmod, grpck, grpconv, grpunconv, lastlog, login, logoutd, newgidmap,
newgrp, newuidmap, newusers, nologin, passwd, pwck, pwconv, pwunconv, sg (link to
newgrp), su, useradd, userdel, usermod, vigr (link to vipw), and vipw

Installed directory: /etc/default

Short Descriptions

chage Used to change the maximum number of days between obligatory password changes

chfn Used to change a user's full name and other information

chgpasswd Used to update group passwords in batch mode

chpasswd Used to update user passwords in batch mode

chsh Used to change a user's default login shell

expiry Checks and enforces the current password expiration policy

faillog Is used to examine the log of login failures, to set a maximum number of failures before an account
is blocked, or to reset the failure count

gpasswd Is used to add and delete members and administrators to groups

groupadd Creates a group with the given name

groupdel Deletes the group with the given name

groupmems Allows a user to administer his/her own group membership list without the requirement of super user
privileges.

groupmod Is used to modify the given group's name or GID

grpck Verifies the integrity of the group files /etc/group and /etc/gshadow

grpconv Creates or updates the shadow group file from the normal group file

grpunconv Updates /etc/group from /etc/gshadow and then deletes the latter

lastlog Reports the most recent login of all users or of a given user

login Is used by the system to let users sign on

logoutd Is a daemon used to enforce restrictions on log-on time and ports

newgidmap Is used to set the gid mapping of a user namespace

newgrp Is used to change the current GID during a login session

newuidmap Is used to set the uid mapping of a user namespace

newusers Is used to create or update an entire series of user accounts

nologin Displays a message that an account is not available; it is designed to be used as the default shell for
accounts that have been disabled

passwd Is used to change the password for a user or group account

pwck Verifies the integrity of the password files /etc/passwd and /etc/shadow

pwconv Creates or updates the shadow password file from the normal password file

pwunconv Updates /etc/passwd from /etc/shadow and then deletes the latter

Linux From Scratch - Version 7.10

130

sg Executes a given command while the user's GID is set to that of the given group

su Runs a shell with substitute user and group IDs

useradd Creates a new user with the given name, or updates the default new-user information

userdel Deletes the given user account

usermod Is used to modify the given user's login name, User Identification (UID), shell, initial group, home
directory, etc.

vigr Edits the /etc/group or /etc/gshadow files

vipw Edits the /etc/passwd or /etc/shadow files

Linux From Scratch - Version 7.10

131

6.26. Psmisc-22.21
The Psmisc package contains programs for displaying information about running processes.

Approximate build time: less than 0.1 SBU
Required disk space: 4.0 MB

6.26.1. Installation of Psmisc
Prepare Psmisc for compilation:

./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Finally, move the killall and fuser programs to the location specified by the FHS:

mv -v /usr/bin/fuser /bin
mv -v /usr/bin/killall /bin

6.26.2. Contents of Psmisc
Installed programs: fuser, killall, peekfd, prtstat, pstree, and pstree.x11 (link to pstree)

Short Descriptions

fuser Reports the Process IDs (PIDs) of processes that use the given files or file systems

killall Kills processes by name; it sends a signal to all processes running any of the given commands

peekfd Peek at file descriptors of a running process, given its PID

prtstat Prints information about a process

pstree Displays running processes as a tree

pstree.x11 Same as pstree, except that it waits for confirmation before exiting

Linux From Scratch - Version 7.10

132

6.27. Iana-Etc-2.30
The Iana-Etc package provides data for network services and protocols.

Approximate build time: less than 0.1 SBU
Required disk space: 2.3 MB

6.27.1. Installation of Iana-Etc
The following command converts the raw data provided by IANA into the correct formats for the /etc/protocols
and /etc/services data files:

make

This package does not come with a test suite.

Install the package:

make install

6.27.2. Contents of Iana-Etc
Installed files: /etc/protocols and /etc/services

Short Descriptions

/etc/protocols Describes the various DARPA Internet protocols that are available from the TCP/IP subsystem

/etc/services Provides a mapping between friendly textual names for internet services, and their underlying
assigned port numbers and protocol types

Linux From Scratch - Version 7.10

133

6.28. M4-1.4.17
The M4 package contains a macro processor.

Approximate build time: 0.4 SBU
Required disk space: 29 MB

6.28.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

The test-update-copyright.sh failure can safely be ignored.

Install the package:

make install

6.28.2. Contents of M4
Installed program: m4

Short Descriptions

m4 copies the given files while expanding the macros that they contain [These macros are either built-in or user-
defined and can take any number of arguments. Besides performing macro expansion, m4 has built-in functions
for including named files, running Unix commands, performing integer arithmetic, manipulating text, recursion,
etc. The m4 program can be used either as a front-end to a compiler or as a macro processor in its own right.]

Linux From Scratch - Version 7.10

134

6.29. Bison-3.0.4
The Bison package contains a parser generator.

Approximate build time: 0.3 SBU
Required disk space: 32 MB

6.29.1. Installation of Bison
Prepare Bison for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/bison-3.0.4

Compile the package:

make

There is a circular dependency between bison and flex with regard to the checks. If desired, after installing flex in the
next section, the bison checks can be run with make check.

Install the package:

make install

6.29.2. Contents of Bison
Installed programs: bison and yacc
Installed library: liby.a
Installed directory: /usr/share/bison

Short Descriptions

bison Generates, from a series of rules, a program for analyzing the structure of text files; Bison is a replacement
for Yacc (Yet Another Compiler Compiler)

yacc A wrapper for bison, meant for programs that still call yacc instead of bison; it calls bison with the -y option

liby The Yacc library containing implementations of Yacc-compatible yyerror and main functions; this library
is normally not very useful, but POSIX requires it

Linux From Scratch - Version 7.10

135

6.30. Flex-2.6.1
The Flex package contains a utility for generating programs that recognize patterns in text.

Approximate build time: 0.4 SBU
Required disk space: 31 MB

6.30.1. Installation of Flex
Prepare Flex for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/flex-2.6.1

Compile the package:

make

To test the results (about 0.5 SBU), issue:

make check

Install the package:

make install

A few programs do not know about flex yet and try to run its predecessor, lex. To support those programs, create a
symbolic link named lex that runs flex in lex emulation mode:

ln -sv flex /usr/bin/lex

6.30.2. Contents of Flex
Installed programs: flex, flex++ (link to flex), and lex (link to flex)
Installed libraries: libfl.so and libfl_pic.so
Installed directory: /usr/share/doc/flex-2.6.1

Short Descriptions

flex A tool for generating programs that recognize patterns in text; it allows for the versatility to specify the rules
for pattern-finding, eradicating the need to develop a specialized program

flex++ An extension of flex, is used for generating C++ code and classes. It is a symbolic link to flex

lex A script that runs flex in lex emulation mode

libfl The flex library

Linux From Scratch - Version 7.10

136

6.31. Grep-2.25
The Grep package contains programs for searching through files.

Approximate build time: 0.4 SBU
Required disk space: 28 MB

6.31.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/usr --bindir=/bin

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.31.2. Contents of Grep
Installed programs: egrep, fgrep, and grep

Short Descriptions

egrep Prints lines matching an extended regular expression

fgrep Prints lines matching a list of fixed strings

grep Prints lines matching a basic regular expression

Linux From Scratch - Version 7.10

137

6.32. Readline-6.3
The Readline package is a set of libraries that offers command-line editing and history capabilities.

Approximate build time: 0.1 SBU
Required disk space: 14 MB

6.32.1. Installation of Readline
First install some patches to fix various bugs that have been addressed upstream:

patch -Np1 -i ../readline-6.3-upstream_fixes-3.patch

Reinstalling Readline will cause the old libraries to be moved to <libraryname>.old. While this is normally not a
problem, in some cases it can trigger a linking bug in ldconfig. This can be avoided by issuing the following two seds:

sed -i '/MV.*old/d' Makefile.in
sed -i '/{OLDSUFF}/c:' support/shlib-install

Prepare Readline for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/readline-6.3

Compile the package:

make SHLIB_LIBS=-lncurses

The meaning of the make option:

SHLIB_LIBS=-lncurses
This option forces Readline to link against the libncurses (really, libncursesw) library.

This package does not come with a test suite.

Install the package:

make SHLIB_LIBS=-lncurses install

Now move the dynamic libraries to a more appropriate location and fix up some symbolic links:

mv -v /usr/lib/lib{readline,history}.so.* /lib
ln -sfv ../../lib/$(readlink /usr/lib/libreadline.so) /usr/lib/libreadline.so
ln -sfv ../../lib/$(readlink /usr/lib/libhistory.so) /usr/lib/libhistory.so

If desired, install the documentation:

install -v -m644 doc/*.{ps,pdf,html,dvi} /usr/share/doc/readline-6.3

6.32.2. Contents of Readline
Installed libraries: libhistory.so and libreadline.so
Installed directories: /usr/include/readline, /usr/share/readline, and /usr/share/doc/readline-6.3

Linux From Scratch - Version 7.10

138

Short Descriptions

libhistory Provides a consistent user interface for recalling lines of history

libreadline Aids in the consistency of user interface across discrete programs that need to provide a command
line interface

Linux From Scratch - Version 7.10

139

6.33. Bash-4.3.30
The Bash package contains the Bourne-Again SHell.

Approximate build time: 1.8 SBU
Required disk space: 50 MB

6.33.1. Installation of Bash

First, apply the following patch to fix various bugs that have been addressed upstream:

patch -Np1 -i ../bash-4.3.30-upstream_fixes-3.patch

Prepare Bash for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/bash-4.3.30 \
 --without-bash-malloc \
 --with-installed-readline

The meaning of the new configure option:

--with-installed-readline

This option tells Bash to use the readline library that is already installed on the system rather than using its
own readline version.

Compile the package:

make

Skip down to “Install the package” if not running the test suite.

To prepare the tests, ensure that the nobody user can write to the sources tree:

chown -Rv nobody .

Now, run the tests as the nobody user:

su nobody -s /bin/bash -c "PATH=$PATH make tests"

Install the package and move the main executable to /bin:

make install
mv -vf /usr/bin/bash /bin

Run the newly compiled bash program (replacing the one that is currently being executed):

exec /bin/bash --login +h

Note

The parameters used make the bash process an interactive login shell and continue to disable hashing so that
new programs are found as they become available.

Linux From Scratch - Version 7.10

140

6.33.2. Contents of Bash
Installed programs: bash, bashbug, and sh (link to bash)
Installed directory: /usr/share/doc/bash-4.3.30

Short Descriptions

bash A widely-used command interpreter; it performs many types of expansions and substitutions on a given
command line before executing it, thus making this interpreter a powerful tool

bashbug A shell script to help the user compose and mail standard formatted bug reports concerning bash

sh A symlink to the bash program; when invoked as sh, bash tries to mimic the startup behavior of historical
versions of sh as closely as possible, while conforming to the POSIX standard as well

Linux From Scratch - Version 7.10

141

6.34. Bc-1.06.95
The Bc package contains an arbitrary precision numeric processing language.

Approximate build time: 0.1 SBU
Required disk space: 3.6 MB

6.34.1. Installation of Bc
First, fix some minor memory leaks in the code:

patch -Np1 -i ../bc-1.06.95-memory_leak-1.patch

Prepare Bc for compilation:

./configure --prefix=/usr \
 --with-readline \
 --mandir=/usr/share/man \
 --infodir=/usr/share/info

The meaning of the configure options:

--with-readline
This option tells Bc to use the readline library that is already installed on the system rather than using its own
readline version.

Compile the package:

make

To test bc, run the commands below. There is quite a bit of output, so you may want to redirect it to a file. There are a
very small percentage of tests (10 of 12,144) that will indicate a round off error at the last digit.

echo "quit" | ./bc/bc -l Test/checklib.b

Install the package:

make install

6.34.2. Contents of Bc
Installed programs: bc and dc

Short Descriptions

bc is a command line calculator

dc is a reverse-polish command line calculator

Linux From Scratch - Version 7.10

142

6.35. Libtool-2.4.6
The Libtool package contains the GNU generic library support script. It wraps the complexity of using shared libraries
in a consistent, portable interface.

Approximate build time: 2.0 SBU
Required disk space: 43 MB

6.35.1. Installation of Libtool
Prepare Libtool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results (about 11.0 SBU), issue:

make check

Five tests are known to fail in the LFS build environment due to a circular dependency, but all tests pass if rechecked
after automake is installed.

Install the package:

make install

6.35.2. Contents of Libtool
Installed programs: libtool and libtoolize
Installed libraries: libltdl.so
Installed directories: /usr/include/libltdl and /usr/share/libtool

Short Descriptions

libtool Provides generalized library-building support services

libtoolize Provides a standard way to add libtool support to a package

libltdl Hides the various difficulties of dlopening libraries

Linux From Scratch - Version 7.10

143

6.36. GDBM-1.12
The GDBM package contains the GNU Database Manager. It is a library of database functions that use extensible
hashing and work similar to the standard UNIX dbm. The library provides primitives for storing key/data pairs,
searching and retrieving the data by its key and deleting a key along with its data.

Approximate build time: 0.1 SBU
Required disk space: 8.8 MB

6.36.1. Installation of GDBM
Prepare GDBM for compilation:

./configure --prefix=/usr \
 --disable-static \
 --enable-libgdbm-compat

The meaning of the configure option:

--enable-libgdbm-compat
This switch enables the libgdbm compatibility library to be built, as some packages outside of LFS may require
the older DBM routines it provides.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.36.2. Contents of GDBM
Installed programs: gdbm_dump, gdbm_load, and gdbmtool
Installed libraries: libgdbm.so and libgdbm_compat.so

Short Descriptions

gdbm_dump Dumps a GDBM database to a file

gdbm_load Recreates a GDBM database from a dump file

gdbmtool Tests and modifies a GDBM database

libgdbm Contains functions to manipulate a hashed database

libgdbm_compat Compatibility library containing older DBM functions

Linux From Scratch - Version 7.10

144

6.37. Gperf-3.0.4
Gperf generates a perfect hash function from a key set.

Approximate build time: less than 0.1 SBU
Required disk space: 5.4 MB

6.37.1. Installation of Gperf
Prepare Gperf for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/gperf-3.0.4

Compile the package:

make

The tests are known to fail if running multiple simultaneous tests (-j option greater than 1). To test the results, issue:

make -j1 check

Install the package:

make install

6.37.2. Contents of Gperf
Installed program: gperf
Installed directory: /usr/share/doc/gperf-3.0.4

Short Descriptions

gperf Generates a perfect hash from a key set

Linux From Scratch - Version 7.10

145

6.38. Expat-2.2.0
The Expat package contains a stream oriented C library for parsing XML.

Approximate build time: less than 0.1 SBU
Required disk space: 6.1 MB

6.38.1. Installation of Expat
Prepare Expat for compilation:

./configure --prefix=/usr --disable-static

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

If desired, install the documentation:

install -v -dm755 /usr/share/doc/expat-2.2.0
install -v -m644 doc/*.{html,png,css} /usr/share/doc/expat-2.2.0

6.38.2. Contents of Expat
Installed program: xmlwf
Installed libraries: libexpat.so
Installed directory: /usr/share/doc/expat-2.2.0

Short Descriptions

xmlwf is a non-validating utility to check whether or not XML documents are well formed

libexpat contains API functions for parsing XML

Linux From Scratch - Version 7.10

146

6.39. Inetutils-1.9.4
The Inetutils package contains programs for basic networking.

Approximate build time: 0.4 SBU
Required disk space: 27 MB

6.39.1. Installation of Inetutils
Prepare Inetutils for compilation:

./configure --prefix=/usr \
 --localstatedir=/var \
 --disable-logger \
 --disable-whois \
 --disable-rcp \
 --disable-rexec \
 --disable-rlogin \
 --disable-rsh \
 --disable-servers

The meaning of the configure options:

--disable-logger
This option prevents Inetutils from installing the logger program, which is used by scripts to pass messages to the
System Log Daemon. Do not install it because Util-linux installs a more recent version.

--disable-whois
This option disables the building of the Inetutils whois client, which is out of date. Instructions for a better whois
client are in the BLFS book.

--disable-r*
These parameters disable building obsolete programs that should not be used due to security issues. The functions
provided by these programs can be provided by the openssh package in the BLFS book.

--disable-servers
This disables the installation of the various network servers included as part of the Inetutils package. These servers
are deemed not appropriate in a basic LFS system. Some are insecure by nature and are only considered safe on
trusted networks. Note that better replacements are available for many of these servers.

Compile the package:

make

To test the results, issue:

make check

One test, libls.sh, is known to fail due to hard coding of some support program paths. All tests pass if the tests are
rerun at the end of Chapter 6.

Install the package:

make install

Linux From Scratch - Version 7.10

147

Move some programs so they are available if /usr is not accessible:

mv -v /usr/bin/{hostname,ping,ping6,traceroute} /bin
mv -v /usr/bin/ifconfig /sbin

6.39.2. Contents of Inetutils
Installed programs: dnsdomainname, ftp, ifconfig, hostname, ping, ping6, talk, telnet, tftp, and traceroute

Short Descriptions

dnsdomainname Show the system's DNS domain name

ftp Is the file transfer protocol program

hostname Reports or sets the name of the host

ifconfig Manages network interfaces

ping Sends echo-request packets and reports how long the replies take

ping6 A version of ping for IPv6 networks

talk Is used to chat with another user

telnet An interface to the TELNET protocol

tftp A trivial file transfer program

traceroute Traces the route your packets take from the host you are working on to another host on a network,
showing all the intermediate hops (gateways) along the way

Linux From Scratch - Version 7.10

148

6.40. Perl-5.24.0
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 6.2 SBU
Required disk space: 245 MB

6.40.1. Installation of Perl
First create a basic /etc/hosts file to be referenced in one of Perl's configuration files as well as the optional test
suite:

echo "127.0.0.1 localhost $(hostname)" > /etc/hosts

This version of Perl now builds the Compress::Raw::Zlib and Compress::Raw::BZip2 modules. By default Perl will
use an internal copy of the sources for the build. Issue the following command so that Perl will use the libraries installed
on the system:

export BUILD_ZLIB=False
export BUILD_BZIP2=0

To have full control over the way Perl is set up, you can remove the “-des” options from the following command and
hand-pick the way this package is built. Alternatively, use the command exactly as below to use the defaults that Perl
auto-detects:

sh Configure -des -Dprefix=/usr \
 -Dvendorprefix=/usr \
 -Dman1dir=/usr/share/man/man1 \
 -Dman3dir=/usr/share/man/man3 \
 -Dpager="/usr/bin/less -isR" \
 -Duseshrplib

The meaning of the configure options:

-Dvendorprefix=/usr
This ensures perl knows how to tell packages where they should install their perl modules.

-Dpager="/usr/bin/less -isR"
This ensures that less is used instead of more.

-Dman1dir=/usr/share/man/man1 -Dman3dir=/usr/share/man/man3
Since Groff is not installed yet, Configure thinks that we do not want man pages for Perl. Issuing these parameters
overrides this decision.

-Duseshrplib
Build a shared libperl needed by some perl modules.

Compile the package:

make

To test the results (approximately 2.5 SBU), issue:

make -k test

Linux From Scratch - Version 7.10

149

Install the package and clean up:

make install
unset BUILD_ZLIB BUILD_BZIP2

6.40.2. Contents of Perl
Installed programs: c2ph, corelist, cpan, enc2xs, encguess, h2ph, h2xs, instmodsh, json_pp, libnetcfg, perl,

perl5.24.0 (hard link to perl), perlbug, perldoc, perlivp, perlthanks (hard link to perlbug),
piconv, pl2pm, pod2html, pod2man, pod2text, pod2usage, podchecker, podselect, prove,
pstruct (hard link to c2ph), ptar, ptardiff, ptargrep, shasum, splain, xsubpp, and zipdetails

Installed libraries: Many which cannot all be listed here
Installed directory: /usr/lib/perl5

Short Descriptions

a2p Translates awk to Perl

c2ph Dumps C structures as generated from cc -g -S

corelist A commandline frontend to Module::CoreList

cpan Interact with the Comprehensive Perl Archive Network (CPAN) from the command line

cpan2dist The CPANPLUS distribution creator

cpanp The CPANPLUS launcher

cpanp-run-perl Perl script that is used to enable flushing of the output buffer after each write in spawned
processes

enc2xs Builds a Perl extension for the Encode module from either Unicode Character Mappings or Tcl
Encoding Files

encguess Guess the encoding type of one or several files

find2perl Translates find commands to Perl

h2ph Converts .h C header files to .ph Perl header files

h2xs Converts .h C header files to Perl extensions

instmodsh Shell script for examining installed Perl modules, and can even create a tarball from an installed
module

json_pp Converts data between certain input and output formats

libnetcfg Can be used to configure the libnet Perl module

perl Combines some of the best features of C, sed, awk and sh into a single swiss-army language

perl5.24.0 A hard link to perl

perlbug Used to generate bug reports about Perl, or the modules that come with it, and mail them

perldoc Displays a piece of documentation in pod format that is embedded in the Perl installation tree
or in a Perl script

perlivp The Perl Installation Verification Procedure; it can be used to verify that Perl and its libraries
have been installed correctly

perlthanks Used to generate thank you messages to mail to the Perl developers

Linux From Scratch - Version 7.10

150

piconv A Perl version of the character encoding converter iconv

pl2pm A rough tool for converting Perl4 .pl files to Perl5 .pm modules

pod2html Converts files from pod format to HTML format

pod2latex Converts files from pod format to LaTeX format

pod2man Converts pod data to formatted *roff input

pod2text Converts pod data to formatted ASCII text

pod2usage Prints usage messages from embedded pod docs in files

podchecker Checks the syntax of pod format documentation files

podselect Displays selected sections of pod documentation

prove Command line tool for running tests against the Test::Harness module

pstruct Dumps C structures as generated from cc -g -S stabs

ptar A tar-like program written in Perl

ptardiff A Perl program that compares an extracted archive with an unextracted one

ptargrep A Perl program that applies pattern matching to the contents of files in a tar archive

s2p Translates sed scripts to Perl

shasum Prints or checks SHA checksums

splain Is used to force verbose warning diagnostics in Perl

xsubpp Converts Perl XS code into C code

zipdetails Displays details about the internal structure of a Zip file

Linux From Scratch - Version 7.10

151

6.41. XML::Parser-2.44
The XML::Parser module is a Perl interface to James Clark's XML parser, Expat.

Approximate build time: less than 0.1 SBU
Required disk space: 2.0 MB

6.41.1. Installation of XML::Parser
Prepare XML::Parser for compilation:

perl Makefile.PL

Compile the package:

make

To test the results, issue:

make test

Install the package:

make install

6.41.2. Contents of XML::Parser
Installed module: Expat.so

Short Descriptions

Expat provides the Perl Expat interface

Linux From Scratch - Version 7.10

152

6.42. Intltool-0.51.0
The Intltool is an internationalization tool used for extracting translatable strings from source files.

Approximate build time: less than 0.1 SBU
Required disk space: 1.5 MB

6.42.1. Installation of Intltool
First fix a warning that is caused by perl-5.22 and later:

sed -i 's:\\\${:\\\$\\{:' intltool-update.in

Prepare Intltool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install
install -v -Dm644 doc/I18N-HOWTO /usr/share/doc/intltool-0.51.0/I18N-HOWTO

6.42.2. Contents of Intltool
Installed programs: intltool-extract, intltool-merge, intltool-prepare, intltool-update, and intltoolize
Installed directories: /usr/share/doc/intltool-0.51.0 and /usr/share/intltool

Short Descriptions

intltoolize Prepares a package to use intltool

intltool-extract Generates header files that can be read by gettext

intltool-merge Merges translated strings into various file types

intltool-prepare Updates pot files and merges them with translation files

intltool-update Updates the po template files and merges them with the translations

Linux From Scratch - Version 7.10

153

6.43. Autoconf-2.69
The Autoconf package contains programs for producing shell scripts that can automatically configure source code.

Approximate build time: less than 0.1 SBU (about 3.5 SBU with tests)
Required disk space: 17.5 MB

6.43.1. Installation of Autoconf
Prepare Autoconf for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

This takes a long time, about 3.5 SBUs. In addition, several tests are skipped that use Automake. For full test coverage,
Autoconf can be re-tested after Automake has been installed. In addition, two tests fail due to changes in libtool-2.4.3
and later.

Install the package:

make install

6.43.2. Contents of Autoconf
Installed programs: autoconf, autoheader, autom4te, autoreconf, autoscan, autoupdate, and ifnames
Installed directory: /usr/share/autoconf

Short Descriptions

autoconf Produces shell scripts that automatically configure software source code packages to adapt to many
kinds of Unix-like systems; the configuration scripts it produces are independent—running them
does not require the autoconf program

autoheader A tool for creating template files of C #define statements for configure to use

autom4te A wrapper for the M4 macro processor

autoreconf Automatically runs autoconf, autoheader, aclocal, automake, gettextize, and libtoolize in the
correct order to save time when changes are made to autoconf and automake template files

autoscan Helps to create a configure.in file for a software package; it examines the source files in a
directory tree, searching them for common portability issues, and creates a configure.scan file
that serves as as a preliminary configure.in file for the package

autoupdate Modifies a configure.in file that still calls autoconf macros by their old names to use the
current macro names

ifnames Helps when writing configure.in files for a software package; it prints the identifiers that the
package uses in C preprocessor conditionals [If a package has already been set up to have some

Linux From Scratch - Version 7.10

154

portability, this program can help determine what configure needs to check for. It can also fill in
gaps in a configure.in file generated by autoscan.]

Linux From Scratch - Version 7.10

155

6.44. Automake-1.15
The Automake package contains programs for generating Makefiles for use with Autoconf.

Approximate build time: less than 0.1 SBU (about 7.8 SBU with tests)
Required disk space: 110 MB

6.44.1. Installation of Automake
First fix a warning that is caused by perl-5.22 and later:

sed -i 's:/\\\${:/\\\$\\{:' bin/automake.in

Prepare Automake for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/automake-1.15

Compile the package:

make

There are a couple of tests that incorrectly link to the wrong version of the flex library, so we temporarily work around
the problem. Also, using the -j4 make option speeds up the tests, even on systems with only one processor, due to
internal delays in individual tests. To test the results, issue:

sed -i "s:./configure:LEXLIB=/usr/lib/libfl.a &:" t/lex-{clean,depend}-cxx.sh
make -j4 check

Install the package:

make install

6.44.2. Contents of Automake
Installed programs: aclocal, aclocal-1.15 (hard linked with aclocal), automake, and automake-1.15 (hard

linked with automake)
Installed directories: /usr/share/aclocal-1.15, /usr/share/automake-1.15, and /usr/share/doc/automake-1.15

Short Descriptions

aclocal Generates aclocal.m4 files based on the contents of configure.in files

aclocal-1.15 A hard link to aclocal

automake A tool for automatically generating Makefile.in files from Makefile.am files [To create
all the Makefile.in files for a package, run this program in the top-level directory. By
scanning the configure.in file, it automatically finds each appropriate Makefile.am file
and generates the corresponding Makefile.in file.]

automake-1.15 A hard link to automake

Linux From Scratch - Version 7.10

156

6.45. Xz-5.2.2
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and
the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with
the traditional gzip or bzip2 commands.

Approximate build time: 0.2 SBU
Required disk space: 15 MB

6.45.1. Installation of Xz
First, fix an internal problem:

sed -e '/mf\.buffer = NULL/a next->coder->mf.size = 0;' \
 -i src/liblzma/lz/lz_encoder.c

Prepare Xz for compilation with:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/xz-5.2.2

Compile the package:

make

To test the results, issue:

make check

Install the package and make sure that all essential files are in the correct directory:

make install
mv -v /usr/bin/{lzma,unlzma,lzcat,xz,unxz,xzcat} /bin
mv -v /usr/lib/liblzma.so.* /lib
ln -svf ../../lib/$(readlink /usr/lib/liblzma.so) /usr/lib/liblzma.so

6.45.2. Contents of Xz
Installed programs: lzcat (link to xz), lzcmp (link to xzdiff), lzdiff (link to xzdiff), lzegrep (link to xzgrep),

lzfgrep (link to xzgrep), lzgrep (link to xzgrep), lzless (link to xzless), lzma (link to xz),
lzmadec, lzmainfo, lzmore (link to xzmore), unlzma (link to xz), unxz (link to xz), xz,
xzcat (link to xz), xzcmp (link to xzdiff), xzdec, xzdiff, xzegrep (link to xzgrep), xzfgrep
(link to xzgrep), xzgrep, xzless, and xzmore

Installed libraries: liblzma.so
Installed directories: /usr/include/lzma and /usr/share/doc/xz-5.2.2

Short Descriptions

lzcat Decompresses to standard output

lzcmp Runs cmp on LZMA compressed files

lzdiff Runs diff on LZMA compressed files

Linux From Scratch - Version 7.10

157

lzegrep Runs egrep on LZMA compressed files

lzfgrep Runs fgrep on LZMA compressed files

lzgrep Runs grep on LZMA compressed files

lzless Runs less on LZMA compressed files

lzma Compresses or decompresses files using the LZMA format

lzmadec A small and fast decoder for LZMA compressed files

lzmainfo Shows information stored in the LZMA compressed file header

lzmore Runs more on LZMA compressed files

unlzma Decompresses files using the LZMA format

unxz Decompresses files using the XZ format

xz Compresses or decompresses files using the XZ format

xzcat Decompresses to standard output

xzcmp Runs cmp on XZ compressed files

xzdec A small and fast decoder for XZ compressed files

xzdiff Runs diff on XZ compressed files

xzegrep Runs egrep on XZ compressed files files

xzfgrep Runs fgrep on XZ compressed files

xzgrep Runs grep on XZ compressed files

xzless Runs less on XZ compressed files

xzmore Runs more on XZ compressed files

liblzma The library implementing lossless, block-sorting data compression, using the Lempel-Ziv-Markov chain
algorithm

Linux From Scratch - Version 7.10

158

6.46. Kmod-23
The Kmod package contains libraries and utilities for loading kernel modules

Approximate build time: 0.1 SBU
Required disk space: 10.3 MB

6.46.1. Installation of Kmod
Prepare Kmod for compilation:

./configure --prefix=/usr \
 --bindir=/bin \
 --sysconfdir=/etc \
 --with-rootlibdir=/lib \
 --with-xz \
 --with-zlib

The meaning of the configure options:

--with-xz, --with-zlib
These options enable Kmod to handle compressed kernel modules.

--with-rootlibdir=/lib
This option ensures different library related files are placed in the correct directories.

Compile the package:

make

This package does not come with a test suite that can be run in the LFS chroot environment. At a minimum the git
program is required and several tests will not run outside of a git repository.

Install the package, and create symlinks for compatibility with Module-Init-Tools (the package that previously handled
Linux kernel modules):

make install

for target in depmod insmod lsmod modinfo modprobe rmmod; do
 ln -sfv ../bin/kmod /sbin/$target
done

ln -sfv kmod /bin/lsmod

6.46.2. Contents of Kmod
Installed programs: depmod (link to kmod), insmod (link to kmod), kmod, lsmod (link to kmod), modinfo

(link to kmod), modprobe (link to kmod), and rmmod (link to kmod)
Installed library: libkmod.so

Short Descriptions

depmod Creates a dependency file based on the symbols it finds in the existing set of modules; this dependency
file is used by modprobe to automatically load the required modules

Linux From Scratch - Version 7.10

159

insmod Installs a loadable module in the running kernel

kmod Loads and unloads kernel modules

lsmod Lists currently loaded modules

modinfo Examines an object file associated with a kernel module and displays any information that it can glean

modprobe Uses a dependency file, created by depmod, to automatically load relevant modules

rmmod Unloads modules from the running kernel

libkmod This library is used by other programs to load and unload kernel modules

Linux From Scratch - Version 7.10

160

6.47. Gettext-0.19.8.1
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled
with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 3.6 SBU
Required disk space: 199 MB

6.47.1. Installation of Gettext
Prepare Gettext for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/gettext-0.19.8.1

Compile the package:

make

To test the results (this takes a long time, around 3 SBUs), issue:

make check

Nine tests fail due to missing dependencies.

Install the package:

make install
chmod -v 0755 /usr/lib/preloadable_libintl.so

6.47.2. Contents of Gettext
Installed programs: autopoint, envsubst, gettext, gettext.sh, gettextize, hostname, msgattrib, msgcat,

msgcmp, msgcomm, msgconv, msgen, msgexec, msgfilter, msgfmt, msggrep, msginit,
msgmerge, msgunfmt, msguniq, ngettext, recode-sr-latin, and xgettext

Installed libraries: libasprintf.so, libgettextlib.so, libgettextpo.so, libgettextsrc.so, and
preloadable_libintl.so

Installed directories: /usr/lib/gettext, /usr/share/doc/gettext-0.19.8.1, and /usr/share/gettext

Short Descriptions

autopoint Copies standard Gettext infrastructure files into a source package

envsubst Substitutes environment variables in shell format strings

gettext Translates a natural language message into the user's language by looking up the
translation in a message catalog

gettext.sh Primarily serves as a shell function library for gettext

gettextize Copies all standard Gettext files into the given top-level directory of a package to begin
internationalizing it

hostname Displays a network hostname in various forms

Linux From Scratch - Version 7.10

161

msgattrib Filters the messages of a translation catalog according to their attributes and manipulates
the attributes

msgcat Concatenates and merges the given .po files

msgcmp Compares two .po files to check that both contain the same set of msgid strings

msgcomm Finds the messages that are common to the given .po files

msgconv Converts a translation catalog to a different character encoding

msgen Creates an English translation catalog

msgexec Applies a command to all translations of a translation catalog

msgfilter Applies a filter to all translations of a translation catalog

msgfmt Generates a binary message catalog from a translation catalog

msggrep Extracts all messages of a translation catalog that match a given pattern or belong to
some given source files

msginit Creates a new .po file, initializing the meta information with values from the user's
environment

msgmerge Combines two raw translations into a single file

msgunfmt Decompiles a binary message catalog into raw translation text

msguniq Unifies duplicate translations in a translation catalog

ngettext Displays native language translations of a textual message whose grammatical form
depends on a number

recode-sr-latin Recodes Serbian text from Cyrillic to Latin script

xgettext Extracts the translatable message lines from the given source files to make the first
translation template

libasprintf defines the autosprintf class, which makes C formatted output routines usable in C++
programs, for use with the <string> strings and the <iostream> streams

libgettextlib a private library containing common routines used by the various Gettext programs;
these are not intended for general use

libgettextpo Used to write specialized programs that process .po files; this library is used when the
standard applications shipped with Gettext (such as msgcomm, msgcmp, msgattrib,
and msgen) will not suffice

libgettextsrc A private library containing common routines used by the various Gettext programs;
these are not intended for general use

preloadable_libintl A library, intended to be used by LD_PRELOAD that assists libintl in logging
untranslated messages

Linux From Scratch - Version 7.10

162

6.48. Procps-ng-3.3.12
The Procps-ng package contains programs for monitoring processes.

Approximate build time: 0.1 SBU
Required disk space: 14 MB

6.48.1. Installation of Procps-ng
Now prepare procps-ng for compilation:

./configure --prefix=/usr \
 --exec-prefix= \
 --libdir=/usr/lib \
 --docdir=/usr/share/doc/procps-ng-3.3.12 \
 --disable-static \
 --disable-kill

The meaning of the configure options:

--disable-kill
This switch disables building the kill command that will be installed by the Util-linux package.

Compile the package:

make

The test suite needs some custom modifications for LFS. Remove the test that fails when scripting does not use a tty
device. To run the test suite, run the following commands:

sed -i -r 's|(pmap_initname)\\\$|\1|' testsuite/pmap.test/pmap.exp
make check

Install the package:

make install

Finally, move essential libraries to a location that can be found if /usr is not mounted.

mv -v /usr/lib/libprocps.so.* /lib
ln -sfv ../../lib/$(readlink /usr/lib/libprocps.so) /usr/lib/libprocps.so

6.48.2. Contents of Procps-ng
Installed programs: free, pgrep, pidof, pkill, pmap, ps, pwdx, slabtop, sysctl, tload, top, uptime, vmstat, w,

and watch
Installed library: libprocps.so
Installed directories: /usr/include/proc and /usr/share/doc/procps-ng-3.3.12

Short Descriptions

free Reports the amount of free and used memory (both physical and swap memory) in the system

pgrep Looks up processes based on their name and other attributes

Linux From Scratch - Version 7.10

163

pidof Reports the PIDs of the given programs

pkill Signals processes based on their name and other attributes

pmap Reports the memory map of the given process

ps Lists the current running processes

pwdx Reports the current working directory of a process

slabtop Displays detailed kernel slap cache information in real time

sysctl Modifies kernel parameters at run time

tload Prints a graph of the current system load average

top Displays a list of the most CPU intensive processes; it provides an ongoing look at processor activity
in real time

uptime Reports how long the system has been running, how many users are logged on, and the system load
averages

vmstat Reports virtual memory statistics, giving information about processes, memory, paging, block Input/
Output (IO), traps, and CPU activity

w Shows which users are currently logged on, where, and since when

watch Runs a given command repeatedly, displaying the first screen-full of its output; this allows a user to
watch the output change over time

libprocps Contains the functions used by most programs in this package

Linux From Scratch - Version 7.10

164

6.49. E2fsprogs-1.43.1
The E2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3 and ext4
journaling file systems.

Approximate build time: 2.1 SBU
Required disk space: 54 MB

6.49.1. Installation of E2fsprogs
First, fix a script that adjusts testing output:

sed -i -e 's:\[\.-\]::' tests/filter.sed

The E2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:

mkdir -v build
cd build

Prepare E2fsprogs for compilation:

LIBS=-L/tools/lib \
CFLAGS=-I/tools/include \
PKG_CONFIG_PATH=/tools/lib/pkgconfig \
../configure --prefix=/usr \
 --bindir=/bin \
 --with-root-prefix="" \
 --enable-elf-shlibs \
 --disable-libblkid \
 --disable-libuuid \
 --disable-uuidd \
 --disable-fsck

The meaning of the environment variable and configure options:

PKG_CONFIG_PATH, LIBS, CFLAGS
These variables enable e2fsprogs to be built using the Section 5.33, “Util-linux-2.28.1” package built earlier.

--with-root-prefix="" and --bindir=/bin
Certain programs (such as the e2fsck program) are considered essential programs. When, for example, /usr is
not mounted, these programs still need to be available. They belong in directories like /lib and /sbin. If this
option is not passed to E2fsprogs' configure, the programs are installed into the /usr directory.

--enable-elf-shlibs
This creates the shared libraries which some programs in this package use.

--disable-*
This prevents E2fsprogs from building and installing the libuuid and libblkid libraries, the uuidd daemon,
and the fsck wrapper, as Util-Linux installs more recent versions.

Compile the package:

make

Linux From Scratch - Version 7.10

165

To set up and run the test suite we need to first link some libraries from /tools/lib to a location where the test programs
look. To run the tests, issue:

ln -sfv /tools/lib/lib{blk,uu}id.so.1 lib
make LD_LIBRARY_PATH=/tools/lib check

One of the E2fsprogs tests will attempt to allocate 256 MB of memory. If you do not have significantly more RAM
than this, be sure to enable sufficient swap space for the test. See Section 2.5, “Creating a File System on the Partition”
and Section 2.7, “Mounting the New Partition” for details on creating and enabling swap space.

Install the binaries, documentation, and shared libraries:

make install

Install the static libraries and headers:

make install-libs

Make the installed static libraries writable so debugging symbols can be removed later:

chmod -v u+w /usr/lib/{libcom_err,libe2p,libext2fs,libss}.a

This package installs a gzipped .info file but doesn't update the system-wide dir file. Unzip this file and then update
the system dir file using the following commands.

gunzip -v /usr/share/info/libext2fs.info.gz
install-info --dir-file=/usr/share/info/dir /usr/share/info/libext2fs.info

If desired, create and install some additional documentation by issuing the following commands:

makeinfo -o doc/com_err.info ../lib/et/com_err.texinfo
install -v -m644 doc/com_err.info /usr/share/info
install-info --dir-file=/usr/share/info/dir /usr/share/info/com_err.info

6.49.2. Contents of E2fsprogs
Installed programs: badblocks, chattr, compile_et, debugfs, dumpe2fs,e2freefrag, e2fsck, e2image, e2label,

e2undo, e4defrag, filefrag, fsck.ext2, fsck.ext3, fsck.ext4, fsck.ext4dev, logsave, lsattr,
mk_cmds, mke2fs, mkfs.ext2, mkfs.ext3, mkfs.ext4, mkfs.ext4dev, mklost+found,
resize2fs, and tune2fs

Installed libraries: libcom_err.so, libe2p.so, libext2fs.so, and libss.so
Installed directories: /usr/include/e2p, /usr/include/et, /usr/include/ext2fs, /usr/include/ss, /usr/share/et, and /

usr/share/ss

Short Descriptions

badblocks Searches a device (usually a disk partition) for bad blocks

chattr Changes the attributes of files on an ext2 file system; it also changes ext3 file systems, the
journaling version of ext2 file systems

compile_et An error table compiler; it converts a table of error-code names and messages into a C source file
suitable for use with the com_err library

debugfs A file system debugger; it can be used to examine and change the state of an ext2 file system

Linux From Scratch - Version 7.10

166

dumpe2fs Prints the super block and blocks group information for the file system present on a given device

e2freefrag Reports free space fragmentation information

e2fsck Is used to check, and optionally repair ext2 file systems and ext3 file systems

e2image Is used to save critical ext2 file system data to a file

e2label Displays or changes the file system label on the ext2 file system present on a given device

e2undo Replays the undo log undo_log for an ext2/ext3/ext4 filesystem found on a device [This can be
used to undo a failed operation by an e2fsprogs program.]

e4defrag Online defragmenter for ext4 filesystems

filefrag Reports on how badly fragmented a particular file might be

fsck.ext2 By default checks ext2 file systems and is a hard link to e2fsck

fsck.ext3 By default checks ext3 file systems and is a hard link to e2fsck

fsck.ext4 By default checks ext4 file systems and is a hard link to e2fsck

fsck.ext4dev By default checks ext4 development file systems and is a hard link to e2fsck

logsave Saves the output of a command in a log file

lsattr Lists the attributes of files on a second extended file system

mk_cmds Converts a table of command names and help messages into a C source file suitable for use with
the libss subsystem library

mke2fs Creates an ext2 or ext3 file system on the given device

mkfs.ext2 By default creates ext2 file systems and is a hard link to mke2fs

mkfs.ext3 By default creates ext3 file systems and is a hard link to mke2fs

mkfs.ext4 By default creates ext4 file systems and is a hard link to mke2fs

mkfs.ext4dev By default creates ext4 development file systems and is a hard link to mke2fs

mklost+found Used to create a lost+found directory on an ext2 file system; it pre-allocates disk blocks to
this directory to lighten the task of e2fsck

resize2fs Can be used to enlarge or shrink an ext2 file system

tune2fs Adjusts tunable file system parameters on an ext2 file system

libcom_err The common error display routine

libe2p Used by dumpe2fs, chattr, and lsattr

libext2fs Contains routines to enable user-level programs to manipulate an ext2 file system

libss Used by debugfs

Linux From Scratch - Version 7.10

167

6.50. Coreutils-8.25
The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 2.6 SBU
Required disk space: 168 MB

6.50.1. Installation of Coreutils

POSIX requires that programs from Coreutils recognize character boundaries correctly even in multibyte locales. The
following patch fixes this non-compliance and other internationalization-related bugs.

patch -Np1 -i ../coreutils-8.25-i18n-2.patch

Note

In the past, many bugs were found in this patch. When reporting new bugs to Coreutils maintainers, please
check first if they are reproducible without this patch.

Now prepare Coreutils for compilation:

FORCE_UNSAFE_CONFIGURE=1 ./configure \
 --prefix=/usr \
 --enable-no-install-program=kill,uptime

The meaning of the configure options:

FORCE_UNSAFE_CONFIGURE=1

This environment variable allows the package to be built as the root user.

--enable-no-install-program=kill,uptime

The purpose of this switch is to prevent Coreutils from installing binaries that will be installed by other packages
later.

Compile the package:

FORCE_UNSAFE_CONFIGURE=1 make

Skip down to “Install the package” if not running the test suite.

Now the test suite is ready to be run. First, run the tests that are meant to be run as user root:

make NON_ROOT_USERNAME=nobody check-root

We're going to run the remainder of the tests as the nobody user. Certain tests, however, require that the user be a
member of more than one group. So that these tests are not skipped we'll add a temporary group and make the user
nobody a part of it:

echo "dummy:x:1000:nobody" >> /etc/group

Fix some of the permissions so that the non-root user can compile and run the tests:

chown -Rv nobody .

Linux From Scratch - Version 7.10

168

Now run the tests. Make sure the PATH in the su environment includes /tools/bin.

su nobody -s /bin/bash \
 -c "PATH=$PATH make RUN_EXPENSIVE_TESTS=yes check"

The stty-pairs test is known to fail on a virtual console, but passes if run in a X terminal.

Remove the temporary group:

sed -i '/dummy/d' /etc/group

Install the package:

make install

Move programs to the locations specified by the FHS:

mv -v /usr/bin/{cat,chgrp,chmod,chown,cp,date,dd,df,echo} /bin
mv -v /usr/bin/{false,ln,ls,mkdir,mknod,mv,pwd,rm} /bin
mv -v /usr/bin/{rmdir,stty,sync,true,uname} /bin
mv -v /usr/bin/chroot /usr/sbin
mv -v /usr/share/man/man1/chroot.1 /usr/share/man/man8/chroot.8
sed -i s/\"1\"/\"8\"/1 /usr/share/man/man8/chroot.8

Some of the scripts in the LFS-Bootscripts package depend on head, sleep, and nice. As /usr may not be available
during the early stages of booting, those binaries need to be on the root partition:

mv -v /usr/bin/{head,sleep,nice,test,[} /bin

6.50.2. Contents of Coreutils
Installed programs: [, base32, base64, basename, cat, chcon, chgrp, chmod, chown, chroot, cksum, comm,

cp, csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor,
false, fmt, fold, groups, head, hostid, id, install, join, link, ln, logname, ls, md5sum,
mkdir, mkfifo, mknod, mktemp, mv, nice, nl, nohup, nproc, numfmt, od, paste, pathchk,
pinky, pr, printenv, printf, ptx, pwd, readlink, realpath, rm, rmdir, runcon, seq, sha1sum,
sha224sum, sha256sum, sha384sum, sha512sum, shred, shuf, sleep, sort, split, stat,
stdbuf, stty, sum, sync, tac, tail, tee, test, timeout, touch, tr, true, truncate, tsort, tty, uname,
unexpand, uniq, unlink, users, vdir, wc, who, whoami, and yes

Installed library: libstdbuf.so
Installed directory: /usr/libexec/coreutils

Short Descriptions

base32 Encodes and decodes data according to the base32 specification (RFC 4648)

base64 Encodes and decodes data according to the base64 specification (RFC 4648)

basename Strips any path and a given suffix from a file name

cat Concatenates files to standard output

chcon Changes security context for files and directories

chgrp Changes the group ownership of files and directories

Linux From Scratch - Version 7.10

169

chmod Changes the permissions of each file to the given mode; the mode can be either a symbolic
representation of the changes to make or an octal number representing the new permissions

chown Changes the user and/or group ownership of files and directories

chroot Runs a command with the specified directory as the / directory

cksum Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file

comm Compares two sorted files, outputting in three columns the lines that are unique and the lines that are
common

cp Copies files

csplit Splits a given file into several new files, separating them according to given patterns or line numbers
and outputting the byte count of each new file

cut Prints sections of lines, selecting the parts according to given fields or positions

date Displays the current time in the given format, or sets the system date

dd Copies a file using the given block size and count, while optionally performing conversions on it

df Reports the amount of disk space available (and used) on all mounted file systems, or only on the file
systems holding the selected files

dir Lists the contents of each given directory (the same as the ls command)

dircolors Outputs commands to set the LS_COLOR environment variable to change the color scheme used by ls

dirname Strips the non-directory suffix from a file name

du Reports the amount of disk space used by the current directory, by each of the given directories
(including all subdirectories) or by each of the given files

echo Displays the given strings

env Runs a command in a modified environment

expand Converts tabs to spaces

expr Evaluates expressions

factor Prints the prime factors of all specified integer numbers

false Does nothing, unsuccessfully; it always exits with a status code indicating failure

fmt Reformats the paragraphs in the given files

fold Wraps the lines in the given files

groups Reports a user's group memberships

head Prints the first ten lines (or the given number of lines) of each given file

hostid Reports the numeric identifier (in hexadecimal) of the host

id Reports the effective user ID, group ID, and group memberships of the current user or specified user

install Copies files while setting their permission modes and, if possible, their owner and group

join Joins the lines that have identical join fields from two separate files

link Creates a hard link with the given name to a file

ln Makes hard links or soft (symbolic) links between files

logname Reports the current user's login name

Linux From Scratch - Version 7.10

170

ls Lists the contents of each given directory

md5sum Reports or checks Message Digest 5 (MD5) checksums

mkdir Creates directories with the given names

mkfifo Creates First-In, First-Outs (FIFOs), a "named pipe" in UNIX parlance, with the given names

mknod Creates device nodes with the given names; a device node is a character special file, a block special
file, or a FIFO

mktemp Creates temporary files in a secure manner; it is used in scripts

mv Moves or renames files or directories

nice Runs a program with modified scheduling priority

nl Numbers the lines from the given files

nohup Runs a command immune to hangups, with its output redirected to a log file

nproc Prints the number of processing units available to a process

numfmt Converts numbers to or from human-readable strings

od Dumps files in octal and other formats

paste Merges the given files, joining sequentially corresponding lines side by side, separated by tab characters

pathchk Checks if file names are valid or portable

pinky Is a lightweight finger client; it reports some information about the given users

pr Paginates and columnates files for printing

printenv Prints the environment

printf Prints the given arguments according to the given format, much like the C printf function

ptx Produces a permuted index from the contents of the given files, with each keyword in its context

pwd Reports the name of the current working directory

readlink Reports the value of the given symbolic link

realpath Prints the resolved path

rm Removes files or directories

rmdir Removes directories if they are empty

runcon Runs a command with specified security context

seq Prints a sequence of numbers within a given range and with a given increment

sha1sum Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums

sha224sum Prints or checks 224-bit Secure Hash Algorithm checksums

sha256sum Prints or checks 256-bit Secure Hash Algorithm checksums

sha384sum Prints or checks 384-bit Secure Hash Algorithm checksums

sha512sum Prints or checks 512-bit Secure Hash Algorithm checksums

shred Overwrites the given files repeatedly with complex patterns, making it difficult to recover the data

shuf Shuffles lines of text

sleep Pauses for the given amount of time

Linux From Scratch - Version 7.10

171

sort Sorts the lines from the given files

split Splits the given file into pieces, by size or by number of lines

stat Displays file or filesystem status

stdbuf Runs commands with altered buffering operations for its standard streams

stty Sets or reports terminal line settings

sum Prints checksum and block counts for each given file

sync Flushes file system buffers; it forces changed blocks to disk and updates the super block

tac Concatenates the given files in reverse

tail Prints the last ten lines (or the given number of lines) of each given file

tee Reads from standard input while writing both to standard output and to the given files

test Compares values and checks file types

timeout Runs a command with a time limit

touch Changes file timestamps, setting the access and modification times of the given files to the current time;
files that do not exist are created with zero length

tr Translates, squeezes, and deletes the given characters from standard input

true Does nothing, successfully; it always exits with a status code indicating success

truncate Shrinks or expands a file to the specified size

tsort Performs a topological sort; it writes a completely ordered list according to the partial ordering in a
given file

tty Reports the file name of the terminal connected to standard input

uname Reports system information

unexpand Converts spaces to tabs

uniq Discards all but one of successive identical lines

unlink Removes the given file

users Reports the names of the users currently logged on

vdir Is the same as ls -l

wc Reports the number of lines, words, and bytes for each given file, as well as a total line when more
than one file is given

who Reports who is logged on

whoami Reports the user name associated with the current effective user ID

yes Repeatedly outputs “y” or a given string until killed

libstdbuf Library used by stdbuf

Linux From Scratch - Version 7.10

172

6.51. Diffutils-3.5
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.4 SBU
Required disk space: 30 MB

6.51.1. Installation of Diffutils
First fix a file so locale files are installed:

sed -i 's:= @mkdir_p@:= /bin/mkdir -p:' po/Makefile.in.in

Prepare Diffutils for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

The test-update-copyright.sh failure can be safely ignored.

Install the package:

make install

6.51.2. Contents of Diffutils
Installed programs: cmp, diff, diff3, and sdiff

Short Descriptions

cmp Compares two files and reports whether or in which bytes they differ

diff Compares two files or directories and reports which lines in the files differ

diff3 Compares three files line by line

sdiff Merges two files and interactively outputs the results

Linux From Scratch - Version 7.10

173

6.52. Gawk-4.1.3
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.3 SBU
Required disk space: 35 MB

6.52.1. Installation of Gawk
Prepare Gawk for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

If desired, install the documentation:

mkdir -v /usr/share/doc/gawk-4.1.3
cp -v doc/{awkforai.txt,*.{eps,pdf,jpg}} /usr/share/doc/gawk-4.1.3

6.52.2. Contents of Gawk
Installed programs: awk (link to gawk), gawk, gawk-4.1.3, and igawk
Installed libraries: filefuncs.so, fnmatch.so, fork.so, inplace.so, ordchr.so, readdir.so, readfile.so,

revoutput.so, revtwoway.so, rwarray.so, testext.so, and time.so
Installed directories: /usr/lib/gawk, /usr/libexec/awk, /usr/share/awk, and /usr/share/doc/gawk-4.1.3

Short Descriptions

awk A link to gawk

gawk A program for manipulating text files; it is the GNU implementation of awk

gawk-4.1.3 A hard link to gawk

igawk Gives gawk the ability to include files

Linux From Scratch - Version 7.10

174

6.53. Findutils-4.6.0
The Findutils package contains programs to find files. These programs are provided to recursively search through a
directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if the
database has not been recently updated).

Approximate build time: 1.6 SBU
Required disk space: 48 MB

6.53.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/usr --localstatedir=/var/lib/locate

The meaning of the configure options:

--localstatedir
This option changes the location of the locate database to be in /var/lib/locate, which is FHS-compliant.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Some of the scripts in the LFS-Bootscripts package depend on find. As /usr may not be available during the early
stages of booting, this program needs to be on the root partition. The updatedb script also needs to be modified to
correct an explicit path:

mv -v /usr/bin/find /bin
sed -i 's|find:=${BINDIR}|find:=/bin|' /usr/bin/updatedb

6.53.2. Contents of Findutils
Installed programs: code, find, locate, oldfind, updatedb, and xargs

Short Descriptions

code Was formerly used to produce locate databases; it is the ancestor of frcode

find Searches given directory trees for files matching the specified criteria

locate Searches through a database of file names and reports the names that contain a given string or match
a given pattern

oldfind Older version of find, using a different algorithm

updatedb Updates the locate database; it scans the entire file system (including other file systems that are currently
mounted, unless told not to) and puts every file name it finds into the database

Linux From Scratch - Version 7.10

175

xargs Can be used to apply a given command to a list of files

Linux From Scratch - Version 7.10

176

6.54. Groff-1.22.3
The Groff package contains programs for processing and formatting text.

Approximate build time: 0.5 SBU
Required disk space: 82 MB

6.54.1. Installation of Groff
Groff expects the environment variable PAGE to contain the default paper size. For users in the United States,
PAGE=letter is appropriate. Elsewhere, PAGE=A4 may be more suitable. While the default paper size is configured
during compilation, it can be overridden later by echoing either “A4” or “letter” to the /etc/papersize file.

Prepare Groff for compilation:

PAGE=<paper_size> ./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.54.2. Contents of Groff
Installed programs: addftinfo, afmtodit, chem, eqn, eqn2graph, gdiffmk, glilypond, gperl, gpinyin,

grap2graph, grn, grodvi, groff, groffer, grog, grolbp, grolj4, gropdf, grops, grotty,
hpftodit, indxbib, lkbib, lookbib, mmroff, neqn, nroff, pdfmom, pdfroff, pfbtops, pic,
pic2graph, post-grohtml, preconv, pre-grohtml, refer, roff2dvi, roff2html, roff2pdf,
roff2ps, roff2text, roff2x, soelim, tbl, tfmtodit, and troff

Installed directories: /usr/lib/groff and /usr/share/doc/groff-1.22.3, /usr/share/groff

Short Descriptions

addftinfo Reads a troff font file and adds some additional font-metric information that is used by the groff
system

afmtodit Creates a font file for use with groff and grops

chem Groff preprocessor for producing chemical structure diagrams

eqn Compiles descriptions of equations embedded within troff input files into commands that are
understood by troff

eqn2graph Converts a troff EQN (equation) into a cropped image

gdiffmk Marks differences between groff/nroff/troff files

glilypond Transforms sheet music written in the lilypond language into the groff language

gperl Preprocesor for groff, allowing addition of perl code into groff files

gpinyin Preprocesor for groff, allowing addition of Chinese European-like language Pinyin into groff files.

Linux From Scratch - Version 7.10

177

grap2graph Converts a grap diagram into a cropped bitmap image

grn A groff preprocessor for gremlin files

grodvi A driver for groff that produces TeX dvi format

groff A front-end to the groff document formatting system; normally, it runs the troff program and a
post-processor appropriate for the selected device

groffer Displays groff files and man pages on X and tty terminals

grog Reads files and guesses which of the groff options -e, -man, -me, -mm, -ms, -p, -s, and -t
are required for printing files, and reports the groff command including those options

grolbp Is a groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers)

grolj4 Is a driver for groff that produces output in PCL5 format suitable for an HP LaserJet 4 printer

gropdf Translates the output of GNU troff to PDF

grops Translates the output of GNU troff to PostScript

grotty Translates the output of GNU troff into a form suitable for typewriter-like devices

hpftodit Creates a font file for use with groff -Tlj4 from an HP-tagged font metric file

indxbib Creates an inverted index for the bibliographic databases with a specified file for use with refer,
lookbib, and lkbib

lkbib Searches bibliographic databases for references that contain specified keys and reports any
references found

lookbib Prints a prompt on the standard error (unless the standard input is not a terminal), reads a line
containing a set of keywords from the standard input, searches the bibliographic databases in a
specified file for references containing those keywords, prints any references found on the standard
output, and repeats this process until the end of input

mmroff A simple preprocessor for groff

neqn Formats equations for American Standard Code for Information Interchange (ASCII) output

nroff A script that emulates the nroff command using groff

pdfmom Is a wrapper around groff that facilitates the production of PDF documents from files formatted
with the mom macros.

pdfroff Creates pdf documents using groff

pfbtops Translates a PostScript font in .pfb format to ASCII

pic Compiles descriptions of pictures embedded within troff or TeX input files into commands
understood by TeX or troff

pic2graph Converts a PIC diagram into a cropped image

post-grohtml Translates the output of GNU troff to HTML

preconv Converts encoding of input files to something GNU troff understands

pre-grohtml Translates the output of GNU troff to HTML

refer Copies the contents of a file to the standard output, except that lines between .[and .] are interpreted
as citations, and lines between .R1 and .R2 are interpreted as commands for how citations are to
be processed

roff2dvi Transforms roff files into DVI format

Linux From Scratch - Version 7.10

178

roff2html Transforms roff files into HTML format

roff2pdf Transforms roff files into PDFs

roff2ps Transforms roff files into ps files

roff2text Transforms roff files into text files

roff2x Transforms roff files into other formats

soelim Reads files and replaces lines of the form .so file by the contents of the mentioned file

tbl Compiles descriptions of tables embedded within troff input files into commands that are
understood by troff

tfmtodit Creates a font file for use with groff -Tdvi

troff Is highly compatible with Unix troff; it should usually be invoked using the groff command, which
will also run preprocessors and post-processors in the appropriate order and with the appropriate
options

Linux From Scratch - Version 7.10

179

6.55. GRUB-2.02~beta3
The GRUB package contains the GRand Unified Bootloader.

Approximate build time: 0.8 SBU
Required disk space: 142 MB

6.55.1. Installation of GRUB
Prepare GRUB for compilation:

./configure --prefix=/usr \
 --sbindir=/sbin \
 --sysconfdir=/etc \
 --disable-efiemu \
 --disable-werror

The meaning of the new configure options:

--disable-werror
This allows the build to complete with warnings introduced by more recent Flex versions.

--disable-efiemu
This option minimizes what is built by disabling a feature and testing programs not needed for LFS.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Using GRUB to make your LFS system bootable will be discussed in Section 8.4, “Using GRUB to Set Up the Boot
Process”.

6.55.2. Contents of GRUB
Installed programs: grub-bios-setup, grub-editenv, grub-file, grub-fstest, grub-glue-efi, grub-install, grub-

kbdcomp, grub-macbless, grub-menulst2cfg, grub-mkconfig, grub-mkimage, grub-
mklayout, grub-mknetdir, grub-mkpasswd-pbkdf2, grub-mkrelpath, grub-mkrescue,
grub-mkstandalone, grub-ofpathname, grub-probe, grub-reboot, grub-render-label, grub-
script-check, grub-set-default, grub-sparc64-setup, and grub-syslinux2cfg

Installed directories: /usr/lib/grub, /etc/grub.d, /usr/share/grub, and boot/grub (when grub-install is first run)

Short Descriptions

grub-bios-setup Is a helper program for grub-install

grub-editenv A tool to edit the environment block

grub-file Checks if FILE is of the specified type.

grub-fstest Tool to debug the filesystem driver

Linux From Scratch - Version 7.10

180

grub-glue-efi Processes ia32 and amd64 EFI images and glues them according to Apple format.

grub-install Install GRUB on your drive

grub-kbdcomp Script that converts an xkb layout into one recognized by GRUB

grub-macbless Mac-style bless on HFS or HFS+ files

grub-menulst2cfg Converts a GRUB Legacy menu.lst into a grub.cfg for use with GRUB 2

grub-mkconfig Generate a grub config file

grub-mkimage Make a bootable image of GRUB

grub-mklayout Generates a GRUB keyboard layout file

grub-mknetdir Prepares a GRUB netboot directory

grub-mkpasswd-pbkdf2 Generates an encrypted PBKDF2 password for use in the boot menu

grub-mkrelpath Makes a system pathname relative to its root

grub-mkrescue Make a bootable image of GRUB suitable for a floppy disk or CDROM/DVD

grub-mkstandalone Generates a standalone image

grub-ofpathname Is a helper program that prints the path of a GRUB device

grub-probe Probe device information for a given path or device

grub-reboot Sets the default boot entry for GRUB for the next boot only

grub-render-label Render Apple .disk_label for Apple Macs

grub-script-check Checks GRUB configuration script for syntax errors

grub-set-default Sets the default boot entry for GRUB

grub-sparc64-setup Is a helper program for grub-setup

grub-syslinux2cfg Transform a syslinux config file into grub.cfg format

Linux From Scratch - Version 7.10

181

6.56. Less-481
The Less package contains a text file viewer.

Approximate build time: less than 0.1 SBU
Required disk space: 3.5 MB

6.56.1. Installation of Less
Prepare Less for compilation:

./configure --prefix=/usr --sysconfdir=/etc

The meaning of the configure options:

--sysconfdir=/etc
This option tells the programs created by the package to look in /etc for the configuration files.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.56.2. Contents of Less
Installed programs: less, lessecho, and lesskey

Short Descriptions

less A file viewer or pager; it displays the contents of the given file, letting the user scroll, find strings, and
jump to marks

lessecho Needed to expand meta-characters, such as * and ?, in filenames on Unix systems

lesskey Used to specify the key bindings for less

Linux From Scratch - Version 7.10

182

6.57. Gzip-1.8
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.1 SBU
Required disk space: 19 MB

6.57.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Move a program that needs to be on the root filesystem:

mv -v /usr/bin/gzip /bin

6.57.2. Contents of Gzip
Installed programs: gunzip, gzexe, gzip, uncompress (hard link with gunzip), zcat, zcmp, zdiff, zegrep,

zfgrep, zforce, zgrep, zless, zmore, and znew

Short Descriptions

gunzip Decompresses gzipped files

gzexe Creates self-decompressing executable files

gzip Compresses the given files using Lempel-Ziv (LZ77) coding

uncompress Decompresses compressed files

zcat Decompresses the given gzipped files to standard output

zcmp Runs cmp on gzipped files

zdiff Runs diff on gzipped files

zegrep Runs egrep on gzipped files

zfgrep Runs fgrep on gzipped files

zforce Forces a .gz extension on all given files that are gzipped files, so that gzip will not compress them
again; this can be useful when file names were truncated during a file transfer

zgrep Runs grep on gzipped files

zless Runs less on gzipped files

Linux From Scratch - Version 7.10

183

zmore Runs more on gzipped files

znew Re-compresses files from compress format to gzip format—.Z to .gz

Linux From Scratch - Version 7.10

184

6.58. IPRoute2-4.7.0
The IPRoute2 package contains programs for basic and advanced IPV4-based networking.

Approximate build time: 0.2 SBU
Required disk space: 11 MB

6.58.1. Installation of IPRoute2
The arpd program included in this package will not be built since it is dependent on Berkeley DB, which is not installed
in LFS. However, documentation files and a directory for arpd will still be installed. Prevent this by running the
commands below. If the arpd binary is needed, instructions for compiling Berkeley DB can be found in the BLFS Book
at http://www.linuxfromscratch.org/blfs/view/7.10/server/databases.html#db.

sed -i /ARPD/d Makefile
sed -i 's/arpd.8//' man/man8/Makefile
rm -v doc/arpd.sgml

It is also necessary to disable building one module that requires http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/
iptables.html.

sed -i 's/m_ipt.o//' tc/Makefile

Compile the package:

make

This package comes with a test suite, but due to assumptions it makes, it is not possible to reliably run these tests
from within the chroot environment. If you wish to run these tests after booting into your new LFS system, ensure
you enable /proc/config.gz support in your kernel ("General setup" -> "Enable access to .config through /proc/
config.gz" [CONFIG_IKCONFIG_PROC]), then run 'make alltests' from the testsuite/ subdirectory.

Install the package:

make DOCDIR=/usr/share/doc/iproute2-4.7.0 install

6.58.2. Contents of IPRoute2
Installed programs: bridge, ctstat (link to lnstat), genl, ifcfg, ifstat, ip, lnstat, nstat, routef, routel, rtacct, rtmon,

rtpr, rtstat (link to lnstat), ss, and tc
Installed directories: /etc/iproute2, /usr/lib/tc, and /usr/share/doc/iproute2-4.7.0,

Short Descriptions

bridge Configures network bridges

ctstat Connection status utility

genl

ifcfg A shell script wrapper for the ip command [Note that it requires the arping and rdisk programs from the
iputils package found at http://www.skbuff.net/iputils/.]

ifstat Shows the interface statistics, including the amount of transmitted and received packets by interface

ip The main executable. It has several different functions:

http://www.linuxfromscratch.org/blfs/view/7.10/server/databases.html#db
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/iptables.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/iptables.html
http://www.skbuff.net/iputils/

Linux From Scratch - Version 7.10

185

ip link <device> allows users to look at the state of devices and to make changes
ip addr allows users to look at addresses and their properties, add new addresses, and delete old ones
ip neighbor allows users to look at neighbor bindings and their properties, add new neighbor entries, and
delete old ones
ip rule allows users to look at the routing policies and change them
ip route allows users to look at the routing table and change routing table rules
ip tunnel allows users to look at the IP tunnels and their properties, and change them
ip maddr allows users to look at the multicast addresses and their properties, and change them
ip mroute allows users to set, change, or delete the multicast routing
ip monitor allows users to continuously monitor the state of devices, addresses and routes

lnstat Provides Linux network statistics; it is a generalized and more feature-complete replacement for the old
rtstat program

nstat Shows network statistics

routef A component of ip route. This is for flushing the routing tables

routel A component of ip route. This is for listing the routing tables

rtacct Displays the contents of /proc/net/rt_acct

rtmon Route monitoring utility

rtpr Converts the output of ip -o back into a readable form

rtstat Route status utility

ss Similar to the netstat command; shows active connections

tc Traffic Controlling Executable; this is for Quality Of Service (QOS) and Class Of Service (COS)
implementations
tc qdisc allows users to setup the queueing discipline
tc class allows users to setup classes based on the queuing discipline scheduling
tc estimator allows users to estimate the network flow into a network
tc filter allows users to setup the QOS/COS packet filtering
tc policy allows users to setup the QOS/COS policies

Linux From Scratch - Version 7.10

186

6.59. Kbd-2.0.3
The Kbd package contains key-table files, console fonts, and keyboard utilities.

Approximate build time: 0.1 SBU
Required disk space: 29 MB

6.59.1. Installation of Kbd
The behaviour of the Backspace and Delete keys is not consistent across the keymaps in the Kbd package. The following
patch fixes this issue for i386 keymaps:

patch -Np1 -i ../kbd-2.0.3-backspace-1.patch

After patching, the Backspace key generates the character with code 127, and the Delete key generates a well-known
escape sequence.

Remove the redundant resizecons program (it requires the defunct svgalib to provide the video mode files - for normal
use setfont sizes the console appropriately) together with its manpage.

sed -i 's/\(RESIZECONS_PROGS=\)yes/\1no/g' configure
sed -i 's/resizecons.8 //' docs/man/man8/Makefile.in

Prepare Kbd for compilation:

PKG_CONFIG_PATH=/tools/lib/pkgconfig ./configure --prefix=/usr --disable-vlock

The meaning of the configure options:

--disable-vlock
This option prevents the vlock utility from being built, as it requires the PAM library, which isn't available in the
chroot environment.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Note

For some languages (e.g., Belarusian) the Kbd package doesn't provide a useful keymap where the stock
“by” keymap assumes the ISO-8859-5 encoding, and the CP1251 keymap is normally used. Users of such
languages have to download working keymaps separately.

If desired, install the documentation:

mkdir -v /usr/share/doc/kbd-2.0.3
cp -R -v docs/doc/* /usr/share/doc/kbd-2.0.3

Linux From Scratch - Version 7.10

187

6.59.2. Contents of Kbd
Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, kbdinfo, kbd_mode, kbdrate,

loadkeys, loadunimap, mapscrn, openvt, psfaddtable (link to psfxtable), psfgettable (link
to psfxtable), psfstriptable (link to psfxtable), psfxtable, setfont, setkeycodes, setleds,
setmetamode, setvtrgb, showconsolefont, showkey, unicode_start, and unicode_stop

Installed directories: /usr/share/consolefonts, /usr/share/consoletrans, /usr/share/keymaps, /usr/share/doc/
kbd-2.0.3, and /usr/share/unimaps

Short Descriptions

chvt Changes the foreground virtual terminal

deallocvt Deallocates unused virtual terminals

dumpkeys Dumps the keyboard translation tables

fgconsole Prints the number of the active virtual terminal

getkeycodes Prints the kernel scancode-to-keycode mapping table

kbdinfo Obtains information about the status of a console

kbd_mode Reports or sets the keyboard mode

kbdrate Sets the keyboard repeat and delay rates

loadkeys Loads the keyboard translation tables

loadunimap Loads the kernel unicode-to-font mapping table

mapscrn An obsolete program that used to load a user-defined output character mapping table into the
console driver; this is now done by setfont

openvt Starts a program on a new virtual terminal (VT)

psfaddtable Adds a Unicode character table to a console font

psfgettable Extracts the embedded Unicode character table from a console font

psfstriptable Removes the embedded Unicode character table from a console font

psfxtable Handles Unicode character tables for console fonts

setfont Changes the Enhanced Graphic Adapter (EGA) and Video Graphics Array (VGA) fonts on
the console

setkeycodes Loads kernel scancode-to-keycode mapping table entries; this is useful if there are unusual
keys on the keyboard

setleds Sets the keyboard flags and Light Emitting Diodes (LEDs)

setmetamode Defines the keyboard meta-key handling

setvtrgb Sets the console color map in all virtual terminals

showconsolefont Shows the current EGA/VGA console screen font

showkey Reports the scancodes, keycodes, and ASCII codes of the keys pressed on the keyboard

unicode_start Puts the keyboard and console in UNICODE mode [Don't use this program unless your
keymap file is in the ISO-8859-1 encoding. For other encodings, this utility produces incorrect
results.]

unicode_stop Reverts keyboard and console from UNICODE mode

Linux From Scratch - Version 7.10

188

6.60. Libpipeline-1.4.1
The Libpipeline package contains a library for manipulating pipelines of subprocesses in a flexible and convenient way.

Approximate build time: 0.1 SBU
Required disk space: 7.9 MB

6.60.1. Installation of Libpipeline
Prepare Libpipeline for compilation:

PKG_CONFIG_PATH=/tools/lib/pkgconfig ./configure --prefix=/usr

The meaning of the configure options:

PKG_CONFIG_PATH
Use pkg-config to obtain the location of the test library metadata built in Section 5.14, “Check-0.10.0”.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.60.2. Contents of Libpipeline
Installed library: libpipeline.so

Short Descriptions

libpipeline This library is used to safely construct pipelines between subprocesses

Linux From Scratch - Version 7.10

189

6.61. Make-4.2.1
The Make package contains a program for compiling packages.

Approximate build time: 0.6 SBU
Required disk space: 12.6 MB

6.61.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.61.2. Contents of Make
Installed program: make

Short Descriptions

make Automatically determines which pieces of a package need to be (re)compiled and then issues the relevant
commands

Linux From Scratch - Version 7.10

190

6.62. Patch-2.7.5
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created by
the diff program.

Approximate build time: 0.2 SBU
Required disk space: 19.7 MB

6.62.1. Installation of Patch
Prepare Patch for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.62.2. Contents of Patch
Installed program: patch

Short Descriptions

patch Modifies files according to a patch file [A patch file is normally a difference listing created with the diff
program. By applying these differences to the original files, patch creates the patched versions.]

Linux From Scratch - Version 7.10

191

6.63. Sysklogd-1.5.1
The Sysklogd package contains programs for logging system messages, such as those given by the kernel when unusual
things happen.

Approximate build time: less than 0.1 SBU
Required disk space: 0.6 MB

6.63.1. Installation of Sysklogd

First, fix problems that causes a segmentation fault under some conditions in klogd and fix an obsolete program
construct:

sed -i '/Error loading kernel symbols/{n;n;d}' ksym_mod.c
sed -i 's/union wait/int/' syslogd.c

Compile the package:

make

This package does not come with a test suite.

Install the package:

make BINDIR=/sbin install

6.63.2. Configuring Sysklogd

Create a new /etc/syslog.conf file by running the following:

cat > /etc/syslog.conf << "EOF"
Begin /etc/syslog.conf

auth,authpriv.* -/var/log/auth.log
.;auth,authpriv.none -/var/log/sys.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
*.emerg *

End /etc/syslog.conf
EOF

6.63.3. Contents of Sysklogd
Installed programs: klogd and syslogd

Short Descriptions

klogd A system daemon for intercepting and logging kernel messages

Linux From Scratch - Version 7.10

192

syslogd Logs the messages that system programs offer for logging [Every logged message contains at least a date
stamp and a hostname, and normally the program's name too, but that depends on how trusting the logging
daemon is told to be.]

Linux From Scratch - Version 7.10

193

6.64. Sysvinit-2.88dsf
The Sysvinit package contains programs for controlling the startup, running, and shutdown of the system.

Approximate build time: less than 0.1 SBU
Required disk space: 1.1 MB

6.64.1. Installation of Sysvinit
First, apply a patch that removes several programs installed by other packages, clarifies a message, and fixes a compiler
warning:

patch -Np1 -i ../sysvinit-2.88dsf-consolidated-1.patch

Compile the package:

make -C src

This package does not come with a test suite.

Install the package:

make -C src install

6.64.2. Contents of Sysvinit
Installed programs: bootlogd, fstab-decode, halt, init, killall5, poweroff (link to halt), reboot (link to halt),

runlevel, shutdown, and telinit (link to init)

Short Descriptions

bootlogd Logs boot messages to a log file

fstab-decode Run a command with fstab-encoded arguments

halt Normally invokes shutdown with the -h option, except when already in run-level 0, then it tells
the kernel to halt the system; it notes in the file /var/log/wtmp that the system is being brought
down

init The first process to be started when the kernel has initialized the hardware which takes over the
boot process and starts all the proceses specified in its configuration file

killall5 Sends a signal to all processes, except the processes in its own session so it will not kill its parent
shell

poweroff Tells the kernel to halt the system and switch off the computer (see halt)

reboot Tells the kernel to reboot the system (see halt)

runlevel Reports the previous and the current run-level, as noted in the last run-level record in /var/run/
utmp

shutdown Brings the system down in a secure way, signaling all processes and notifying all logged-in users

telinit Tells init which run-level to change to

Linux From Scratch - Version 7.10

194

6.65. Eudev-3.2
The Eudev package contains programs for dynamic creation of device nodes.

Approximate build time: 0.4 SBU
Required disk space: 77 MB

6.65.1. Installation of Eudev

First, fix a test script:

sed -r -i 's|/usr(/bin/test)|\1|' test/udev-test.pl

Next, add a workaround to prevent the /tools directory from being hard coded into Eudev binary files library locations:

cat > config.cache << "EOF"
HAVE_BLKID=1
BLKID_LIBS="-lblkid"
BLKID_CFLAGS="-I/tools/include"
EOF

Prepare Eudev for compilation:

./configure --prefix=/usr \
 --bindir=/sbin \
 --sbindir=/sbin \
 --libdir=/usr/lib \
 --sysconfdir=/etc \
 --libexecdir=/lib \
 --with-rootprefix= \
 --with-rootlibdir=/lib \
 --enable-manpages \
 --disable-static \
 --config-cache

Compile the package:

LIBRARY_PATH=/tools/lib make

Create some directories now that are needed for tests, but will also be used as a part of installation:

mkdir -pv /lib/udev/rules.d
mkdir -pv /etc/udev/rules.d

To test the results, issue:

make LD_LIBRARY_PATH=/tools/lib check

Install the package:

make LD_LIBRARY_PATH=/tools/lib install

Linux From Scratch - Version 7.10

195

Install some custom rules and support files useful in an LFS environment:

tar -xvf ../udev-lfs-20140408.tar.bz2
make -f udev-lfs-20140408/Makefile.lfs install

6.65.2. Configuring Eudev
Information about hardware devices is maintained in the /etc/udev/hwdb.d and /usr/lib/udev/hwdb.d
directories. Eudev needs that information to be compiled into a binary database /etc/udev/hwdb.bin. Create the
initial database:

LD_LIBRARY_PATH=/tools/lib udevadm hwdb --update

This command needs to be run each time the hardware information is updated.

6.65.3. Contents of Eudev
Installed programs: udevadm and udevd
Installed libraries: libudev.so
Installed directories: /etc/udev, /lib/udev, and /usr/share/doc/udev-20140408

Short Descriptions

udevadm Generic udev administration tool: controls the udevd daemon, provides info from the Udev database,
monitors uevents, waits for uevents to finish, tests Udev configuration, and triggers uevents for a given
device

udevd A daemon that listens for uevents on the netlink socket, creates devices and runs the configured external
programs in response to these uevents

libudev A library interface to udev device information

/etc/udev Contains Udev configuration files, device permissions, and rules for device naming

Linux From Scratch - Version 7.10

196

6.66. Util-linux-2.28.1
The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems,
consoles, partitions, and messages.

Approximate build time: 1.0 SBU
Required disk space: 158 MB

6.66.1. FHS compliance notes
The FHS recommends using the /var/lib/hwclock directory instead of the usual /etc directory as the location
for the adjtime file. First create a directory to enable storage for the hwclock program:

mkdir -pv /var/lib/hwclock

6.66.2. Installation of Util-linux
Prepare Util-linux for compilation:

./configure ADJTIME_PATH=/var/lib/hwclock/adjtime \
 --docdir=/usr/share/doc/util-linux-2.28.1 \
 --disable-chfn-chsh \
 --disable-login \
 --disable-nologin \
 --disable-su \
 --disable-setpriv \
 --disable-runuser \
 --disable-pylibmount \
 --disable-static \
 --without-python \
 --without-systemd \
 --without-systemdsystemunitdir

The --disable and --without options prevent warnings about building components that require packages not in LFS or
are inconsistent with programs installed by other packages.

Compile the package:

make

If desired, run the test suite as a non-root user:

Warning

Running the test suite as the root user can be harmful to your system. To run it, the CONFIG_SCSI_DEBUG
option for the kernel must be available in the currently running system, and must be built as a module. Building
it into the kernel will prevent booting. For complete coverage, other BLFS packages must be installed. If
desired, this test can be run after rebooting into the completed LFS system and running:

bash tests/run.sh --srcdir=$PWD --builddir=$PWD

chown -Rv nobody .
su nobody -s /bin/bash -c "PATH=$PATH make -k check"

Linux From Scratch - Version 7.10

197

Note

One test above, tests/ts/ipcs/limits2, will fail when the host is using a recent kernel. The failure can safely
be ignored.

Install the package:

make install

6.66.3. Contents of Util-linux
Installed programs: addpart, agetty, blkdiscard, blkid, blockdev, cal, cfdisk, chcpu, chrt, col, colcrt, colrm,

column, ctrlaltdel, delpart, dmesg, eject, fallocate, fdformat, fdisk, findfs, findmnt, flock,
fsck, fsck.cramfs, fsck.minix, fsfreeze, fstrim, getopt, hexdump, hwclock, i386, ionice,
ipcmk, ipcrm, ipcs, isosize, kill, last, lastb (link to last), ldattach, linux32, linux64,
logger, look, losetup, lsblk, lscpu, lsipc, lslocks, lslogins, mcookie, mesg, mkfs, mkfs.bfs,
mkfs.cramfs, mkfs.minix, mkswap, more, mount, mountpoint, namei, nsenter, partx,
pg, pivot_root, prlimit, raw, readprofile, rename, renice, resizepart, rev, rtcwake, script,
scriptreplay, setarch, setsid, setterm, sfdisk, sulogin, swaplabel, swapoff (link to swapon),
swapon, switch_root, tailf, taskset, ul, umount, uname26, unshare, utmpdump, uuidd,
uuidgen, wall, wdctl, whereis, wipefs, x86_64, and zramctl

Installed libraries: libblkid.so, libfdisk.so, libmount.so, libsmartcols.so, and libuuid.so
Installed directories: /usr/include/blkid, /usr/include/libfdisk, /usr/include/libmount, /usr/include/

libsmartcols, /usr/include/uuid, /usr/share/doc/util-linux-2.28.1, and /var/lib/hwclock

Short Descriptions

addpart Informs the Linux kernel of new partitions

agetty Opens a tty port, prompts for a login name, and then invokes the login program

blkdiscard Discards sectors on a device

blkid A command line utility to locate and print block device attributes

blockdev Allows users to call block device ioctls from the command line

cal Displays a simple calendar

cfdisk Manipulates the partition table of the given device

chcpu Modifies the state of CPUs

chrt Manipulates real-time attributes of a process

col Filters out reverse line feeds

colcrt Filters nroff output for terminals that lack some capabilities, such as overstriking and half-lines

colrm Filters out the given columns

column Formats a given file into multiple columns

ctrlaltdel Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset

delpart Asks the Linux kernel to remove a partition

dmesg Dumps the kernel boot messages

eject Ejects removable media

Linux From Scratch - Version 7.10

198

fallocate Preallocates space to a file

fdformat Low-level formats a floppy disk

fdisk Manipulates the partition table of the given device

findfs Finds a file system by label or Universally Unique Identifier (UUID)

findmnt Is a command line interface to the libmount library for work with mountinfo, fstab and mtab files

flock Acquires a file lock and then executes a command with the lock held

fsck Is used to check, and optionally repair, file systems

fsck.cramfs Performs a consistency check on the Cramfs file system on the given device

fsck.minix Performs a consistency check on the Minix file system on the given device

fsfreeze Is a very simple wrapper around FIFREEZE/FITHAW ioctl kernel driver operations

fstrim Discards unused blocks on a mounted filesystem

getopt Parses options in the given command line

hexdump Dumps the given file in hexadecimal or in another given format

hwclock Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic Input-
Output System (BIOS) clock

i386 A symbolic link to setarch

ionice Gets or sets the io scheduling class and priority for a program

ipcmk Creates various IPC resources

ipcrm Removes the given Inter-Process Communication (IPC) resource

ipcs Provides IPC status information

isosize Reports the size of an iso9660 file system

kill Sends signals to processes

last Shows which users last logged in (and out), searching back through the /var/log/wtmp file; it
also shows system boots, shutdowns, and run-level changes

lastb Shows the failed login attempts, as logged in /var/log/btmp

ldattach Attaches a line discipline to a serial line

linux32 A symbolic link to setarch

linux64 A symbolic link to setarch

logger Enters the given message into the system log

look Displays lines that begin with the given string

losetup Sets up and controls loop devices

lsblk Lists information about all or selected block devices in a tree-like format

lscpu Prints CPU architecture information

lsipc Prints information on IPC facilities currently employed in the system

lslocks Lists local system locks

lslogins Lists information about users, groups and system accounts

Linux From Scratch - Version 7.10

199

mcookie Generates magic cookies (128-bit random hexadecimal numbers) for xauth

mesg Controls whether other users can send messages to the current user's terminal

mkfs Builds a file system on a device (usually a hard disk partition)

mkfs.bfs Creates a Santa Cruz Operations (SCO) bfs file system

mkfs.cramfs Creates a cramfs file system

mkfs.minix Creates a Minix file system

mkswap Initializes the given device or file to be used as a swap area

more A filter for paging through text one screen at a time

mount Attaches the file system on the given device to a specified directory in the file-system tree

mountpoint Checks if the directory is a mountpoint

namei Shows the symbolic links in the given pathnames

nsenter Runs a program with namespaces of other processes

partx Tells the kernel about the presence and numbering of on-disk partitions

pg Displays a text file one screen full at a time

pivot_root Makes the given file system the new root file system of the current process

prlimit Get and set a process' resource limits

raw Bind a Linux raw character device to a block device

readprofile Reads kernel profiling information

rename Renames the given files, replacing a given string with another

renice Alters the priority of running processes

resizepart Asks the Linux kernel to resize a partition

rev Reverses the lines of a given file

rtcwake Used to enter a system sleep state until specified wakeup time

script Makes a typescript of a terminal session

scriptreplay Plays back typescripts using timing information

setarch Changes reported architecture in a new program environment and sets personality flags

setsid Runs the given program in a new session

setterm Sets terminal attributes

sfdisk A disk partition table manipulator

sulogin Allows root to log in; it is normally invoked by init when the system goes into single user mode

swaplabel Allows to change swaparea UUID and label

swapoff Disables devices and files for paging and swapping

swapon Enables devices and files for paging and swapping and lists the devices and files currently in use

switch_root Switches to another filesystem as the root of the mount tree

tailf Tracks the growth of a log file; displays the last 10 lines of a log file, then continues displaying
any new entries in the log file as they are created

Linux From Scratch - Version 7.10

200

taskset Retrieves or sets a process' CPU affinity

ul A filter for translating underscores into escape sequences indicating underlining for the terminal
in use

umount Disconnects a file system from the system's file tree

uname26 A symbolic link to setarch

unshare Runs a program with some namespaces unshared from parent

utmpdump Displays the content of the given login file in a more user-friendly format

uuidd A daemon used by the UUID library to generate time-based UUIDs in a secure and guranteed-
unique fashion

uuidgen Creates new UUIDs. Each new UUID can reasonably be considered unique among all UUIDs
created, on the local system and on other systems, in the past and in the future

wall Displays the contents of a file or, by default, its standard input, on the terminals of all currently
logged in users

wdctl Shows hardware watchdog status

whereis Reports the location of the binary, source, and man page for the given command

wipefs Wipes a filesystem signature from a device

x86_64 A symbolic link to setarch

zramctl A program to set up and control zram (compressed ram disk) devices

libblkid Contains routines for device identification and token extraction

libfdisk Contains routines for manipulating partition tables

libmount Contains routines for block device mounting and unmounting

libsmartcols Contains routines for aiding screen output in tabular form

libuuid Contains routines for generating unique identifiers for objects that may be accessible beyond the
local system

Linux From Scratch - Version 7.10

201

6.67. Man-DB-2.7.5
The Man-DB package contains programs for finding and viewing man pages.

Approximate build time: 0.4 SBU
Required disk space: 30 MB

6.67.1. Installation of Man-DB
Prepare Man-DB for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/man-db-2.7.5 \
 --sysconfdir=/etc \
 --disable-setuid \
 --with-browser=/usr/bin/lynx \
 --with-vgrind=/usr/bin/vgrind \
 --with-grap=/usr/bin/grap

The meaning of the configure options:

--disable-setuid
This disables making the man program setuid to user man.

--with-...
These three parameters are used to set some default programs. lynx is a text-based web browser (see BLFS for
installation instructions), vgrind converts program sources to Groff input, and grap is useful for typesetting graphs
in Groff documents. The vgrind and grap programs are not normally needed for viewing manual pages. They are
not part of LFS or BLFS, but you should be able to install them yourself after finishing LFS if you wish to do so.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Remove a reference to a non-existent user:

sed -i "s:man root:root root:g" /usr/lib/tmpfiles.d/man-db.conf

6.67.2. Non-English Manual Pages in LFS
The following table shows the character set that Man-DB assumes manual pages installed under /usr/share/man/
<ll> will be encoded with. In addition to this, Man-DB correctly determines if manual pages installed in that directory
are UTF-8 encoded.

Table 6.1. Expected character encoding of legacy 8-bit manual pages

Language (code) Encoding Language (code) Encoding

Danish (da) ISO-8859-1 Croatian (hr) ISO-8859-2

Linux From Scratch - Version 7.10

202

Language (code) Encoding Language (code) Encoding

German (de) ISO-8859-1 Hungarian (hu) ISO-8859-2

English (en) ISO-8859-1 Japanese (ja) EUC-JP

Spanish (es) ISO-8859-1 Korean (ko) EUC-KR

Estonian (et) ISO-8859-1 Lithuanian (lt) ISO-8859-13

Finnish (fi) ISO-8859-1 Latvian (lv) ISO-8859-13

French (fr) ISO-8859-1 Macedonian (mk) ISO-8859-5

Irish (ga) ISO-8859-1 Polish (pl) ISO-8859-2

Galician (gl) ISO-8859-1 Romanian (ro) ISO-8859-2

Indonesian (id) ISO-8859-1 Russian (ru) KOI8-R

Icelandic (is) ISO-8859-1 Slovak (sk) ISO-8859-2

Italian (it) ISO-8859-1 Slovenian (sl) ISO-8859-2

Norwegian Bokmal
(nb)

ISO-8859-1 Serbian Latin (sr@latin) ISO-8859-2

Dutch (nl) ISO-8859-1 Serbian (sr) ISO-8859-5

Norwegian Nynorsk
(nn)

ISO-8859-1 Turkish (tr) ISO-8859-9

Norwegian (no) ISO-8859-1 Ukrainian (uk) KOI8-U

Portuguese (pt) ISO-8859-1 Vietnamese (vi) TCVN5712-1

Swedish (sv) ISO-8859-1 Simplified Chinese (zh_CN) GBK

Belarusian (be) CP1251 Simplified Chinese, Singapore
(zh_SG)

GBK

Bulgarian (bg) CP1251 Traditional Chinese, Hong Kong
(zh_HK)

BIG5HKSCS

Czech (cs) ISO-8859-2 Traditional Chinese (zh_TW) BIG5

Greek (el) ISO-8859-7

Note

Manual pages in languages not in the list are not supported.

6.67.3. Contents of Man-DB
Installed programs: accessdb, apropos (link to whatis), catman, lexgrog, man, mandb, manpath, and whatis
Installed libraries: libman.so and libmandb.so
Installed directories: /usr/lib/man-db, /usr/lib/tmpfiles.d, /usr/libexec/man-db, and /usr/share/doc/man-

db-2.7.5

Short Descriptions

accessdb Dumps the whatis database contents in human-readable form

Linux From Scratch - Version 7.10

203

apropos Searches the whatis database and displays the short descriptions of system commands that contain a
given string

catman Creates or updates the pre-formatted manual pages

lexgrog Displays one-line summary information about a given manual page

man Formats and displays the requested manual page

mandb Creates or updates the whatis database

manpath Displays the contents of $MANPATH or (if $MANPATH is not set) a suitable search path based on the
settings in man.conf and the user's environment

whatis Searches the whatis database and displays the short descriptions of system commands that contain the
given keyword as a separate word

libman Contains run-time support for man

libmandb Contains run-time support for man

Linux From Scratch - Version 7.10

204

6.68. Tar-1.29
The Tar package contains an archiving program.

Approximate build time: 2.2 SBU
Required disk space: 40 MB

6.68.1. Installation of Tar
Prepare Tar for compilation:

FORCE_UNSAFE_CONFIGURE=1 \
./configure --prefix=/usr \
 --bindir=/bin

The meaning of the configure options:

FORCE_UNSAFE_CONFIGURE=1
This forces the test for mknod to be run as root. It is generally considered dangerous to run this test as the root
user, but as it is being run on a system that has only been partially built, overriding it is OK.

Compile the package:

make

To test the results (about 1 SBU), issue:

make check

Install the package:

make install
make -C doc install-html docdir=/usr/share/doc/tar-1.29

6.68.2. Contents of Tar
Installed programs: tar
Installed directory: /usr/share/doc/tar-1.29

Short Descriptions

tar Creates, extracts files from, and lists the contents of archives, also known as tarballs

Linux From Scratch - Version 7.10

205

6.69. Texinfo-6.1
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.5 SBU
Required disk space: 108 MB

6.69.1. Installation of Texinfo

Prepare Texinfo for compilation:

./configure --prefix=/usr --disable-static

The meaning of the configure options:

--disable-static

In this case, the top-level configure script will complain that this is an unrecognized option, but the configure
script for XSParagraph recognizes it and uses it to disable installing a static XSParagraph.a to /usr/lib/
texinfo.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Optionally, install the components belonging in a TeX installation:

make TEXMF=/usr/share/texmf install-tex

The meaning of the make parameter:

TEXMF=/usr/share/texmf

The TEXMF makefile variable holds the location of the root of the TeX tree if, for example, a TeX package will
be installed later.

The Info documentation system uses a plain text file to hold its list of menu entries. The file is located at /usr/share/
info/dir. Unfortunately, due to occasional problems in the Makefiles of various packages, it can sometimes get out
of sync with the info pages installed on the system. If the /usr/share/info/dir file ever needs to be recreated,
the following optional commands will accomplish the task:

pushd /usr/share/info
rm -v dir
for f in *
 do install-info $f dir 2>/dev/null
done
popd

Linux From Scratch - Version 7.10

206

6.69.2. Contents of Texinfo
Installed programs: info, install-info, makeinfo (link to texi2any), pdftexi2dvi, pod2texi, texi2any, texi2dvi,

texi2pdf, and texindex
Installed library: XSParagraph.so
Installed directories: /usr/share/texinfo and /usr/lib/texinfo

Short Descriptions

info Used to read info pages which are similar to man pages, but often go much deeper than just
explaining all the available command line options [For example, compare man bison and info
bison.]

install-info Used to install info pages; it updates entries in the info index file

makeinfo Translates the given Texinfo source documents into info pages, plain text, or HTML

pdftexi2dvi Used to format the given Texinfo document into a Portable Document Format (PDF) file

pod2texi Converts Pod to Texinfo format

texi2any Translate Texinfo source documentation to various other formats

texi2dvi Used to format the given Texinfo document into a device-independent file that can be printed

texi2pdf Used to format the given Texinfo document into a Portable Document Format (PDF) file

texindex Used to sort Texinfo index files

Linux From Scratch - Version 7.10

207

6.70. Vim-7.4
The Vim package contains a powerful text editor.

Approximate build time: 1.0 SBU
Required disk space: 109 MB

Alternatives to Vim

If you prefer another editor—such as Emacs, Joe, or Nano—please refer to http://www.linuxfromscratch.org/
blfs/view/7.10/postlfs/editors.html for suggested installation instructions.

6.70.1. Installation of Vim
First, change the default location of the vimrc configuration file to /etc:

echo '#define SYS_VIMRC_FILE "/etc/vimrc"' >> src/feature.h

Prepare Vim for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make -j1 test

However, this test suite outputs a lot of binary data to the screen, which can cause issues with the settings of the current
terminal. This can be resolved by redirecting the output to a log file. A successful test will result in the words "ALL
DONE" at completion.

Install the package:

make install

Many users are used to using vi instead of vim. To allow execution of vim when users habitually enter vi, create a
symlink for both the binary and the man page in the provided languages:

ln -sv vim /usr/bin/vi
for L in /usr/share/man/{,*/}man1/vim.1; do
 ln -sv vim.1 $(dirname $L)/vi.1
done

By default, Vim's documentation is installed in /usr/share/vim. The following symlink allows the documentation
to be accessed via /usr/share/doc/vim-7.4, making it consistent with the location of documentation for other
packages:

ln -sv ../vim/vim74/doc /usr/share/doc/vim-7.4

If an X Window System is going to be installed on the LFS system, it may be necessary to recompile Vim after installing
X. Vim comes with a GUI version of the editor that requires X and some additional libraries to be installed. For more
information on this process, refer to the Vim documentation and the Vim installation page in the BLFS book at http://
www.linuxfromscratch.org/blfs/view/7.10/postlfs/vim.html.

http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/editors.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/editors.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/vim.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/vim.html

Linux From Scratch - Version 7.10

208

6.70.2. Configuring Vim
By default, vim runs in vi-incompatible mode. This may be new to users who have used other editors in the past. The
“nocompatible” setting is included below to highlight the fact that a new behavior is being used. It also reminds those
who would change to “compatible” mode that it should be the first setting in the configuration file. This is necessary
because it changes other settings, and overrides must come after this setting. Create a default vim configuration file
by running the following:

cat > /etc/vimrc << "EOF"
" Begin /etc/vimrc

set nocompatible
set backspace=2
syntax on
if (&term == "iterm") || (&term == "putty")
 set background=dark
endif

" End /etc/vimrc
EOF

The set nocompatible setting makes vim behave in a more useful way (the default) than the vi-compatible
manner. Remove the “no” to keep the old vi behavior. The set backspace=2 setting allows backspacing over line
breaks, autoindents, and the start of insert. The syntax on parameter enables vim's syntax highlighting. Finally,
the if statement with the set background=dark setting corrects vim's guess about the background color of some
terminal emulators. This gives the highlighting a better color scheme for use on the black background of these programs.

Documentation for other available options can be obtained by running the following command:

vim -c ':options'

Note
By default, Vim only installs spell files for the English language. To install spell files for your preferred
language, download the *.spl and optionally, the *.sug files for your language and character encoding
from ftp://ftp.vim.org/pub/vim/runtime/spell/ and save them to /usr/share/vim/vim74/spell/.

To use these spell files, some configuration in /etc/vimrc is needed, e.g.:

set spelllang=en,ru
set spell

For more information, see the appropriate README file located at the URL above.

6.70.3. Contents of Vim
Installed programs: ex (link to vim), rview (link to vim), rvim (link to vim), vi (link to vim), view (link to

vim), vim, vimdiff (link to vim), vimtutor, and xxd
Installed directory: /usr/share/vim

Short Descriptions

ex Starts vim in ex mode

ftp://ftp.vim.org/pub/vim/runtime/spell/

Linux From Scratch - Version 7.10

209

rview Is a restricted version of view; no shell commands can be started and view cannot be suspended

rvim Is a restricted version of vim; no shell commands can be started and vim cannot be suspended

vi Link to vim

view Starts vim in read-only mode

vim Is the editor

vimdiff Edits two or three versions of a file with vim and show differences

vimtutor Teaches the basic keys and commands of vim

xxd Creates a hex dump of the given file; it can also do the reverse, so it can be used for binary patching

Linux From Scratch - Version 7.10

210

6.71. About Debugging Symbols
Most programs and libraries are, by default, compiled with debugging symbols included (with gcc's -g option). This
means that when debugging a program or library that was compiled with debugging information included, the debugger
can provide not only memory addresses, but also the names of the routines and variables.

However, the inclusion of these debugging symbols enlarges a program or library significantly. The following is an
example of the amount of space these symbols occupy:

• A bash binary with debugging symbols: 1200 KB

• A bash binary without debugging symbols: 480 KB

• Glibc and GCC files (/lib and /usr/lib) with debugging symbols: 87 MB

• Glibc and GCC files without debugging symbols: 16 MB

Sizes may vary depending on which compiler and C library were used, but when comparing programs with and without
debugging symbols, the difference will usually be a factor between two and five.

Because most users will never use a debugger on their system software, a lot of disk space can be regained by removing
these symbols. The next section shows how to strip all debugging symbols from the programs and libraries.

6.72. Stripping Again
If the intended user is not a programmer and does not plan to do any debugging on the system software, the system
size can be decreased by about 90 MB by removing the debugging symbols from binaries and libraries. This causes no
inconvenience other than not being able to debug the software fully anymore.

Most people who use the command mentioned below do not experience any difficulties. However, it is easy to make
a typo and render the new system unusable, so before running the strip command, it is a good idea to make a backup
of the LFS system in its current state.

Before performing the stripping, take special care to ensure that none of the binaries that are about to be stripped
are running. If unsure whether the user entered chroot with the command given in Section 6.4, “Entering the Chroot
Environment,” first exit from chroot:

logout

Then reenter it with:

chroot $LFS /tools/bin/env -i \
 HOME=/root TERM=$TERM PS1='\u:\w\$ ' \
 PATH=/bin:/usr/bin:/sbin:/usr/sbin \
 /tools/bin/bash --login

Now the binaries and libraries can be safely stripped:

/tools/bin/find /usr/lib -type f -name *.a \
 -exec /tools/bin/strip --strip-debug {} ';'

/tools/bin/find /lib /usr/lib -type f -name *.so* \
 -exec /tools/bin/strip --strip-unneeded {} ';'

/tools/bin/find /{bin,sbin} /usr/{bin,sbin,libexec} -type f \
 -exec /tools/bin/strip --strip-all {} ';'

Linux From Scratch - Version 7.10

211

A large number of files will be reported as having their file format not recognized. These warnings can be safely ignored.
These warnings indicate that those files are scripts instead of binaries.

6.73. Cleaning Up
Finally, clean up some extra files left around from running tests:

rm -rf /tmp/*

From now on, when reentering the chroot environment after exiting, use the following modified chroot command:

chroot "$LFS" /usr/bin/env -i \
 HOME=/root TERM="$TERM" PS1='\u:\w\$ ' \
 PATH=/bin:/usr/bin:/sbin:/usr/sbin \
 /bin/bash --login

The reason for this is that the programs in /tools are no longer needed. Since they are no longer needed you can
delete the /tools directory if so desired.

Note

Removing /tools will also remove the temporary copies of Tcl, Expect, and DejaGNU which were used
for running the toolchain tests. If you need these programs later on, they will need to be recompiled and re-
installed. The BLFS book has instructions for this (see http://www.linuxfromscratch.org/blfs/).

If the virtual kernel file systems have been unmounted, either manually or through a reboot, ensure that the virtual
kernel file systems are mounted when reentering the chroot. This process was explained in Section 6.2.2, “Mounting
and Populating /dev” and Section 6.2.3, “Mounting Virtual Kernel File Systems”.

Finally, there were several static libraries that were not suppressed earlier in the chapter in order to satisfy the regression
tests in several packages. These libraries are from binutils, bzip2, e2fsprogs, flex, libtool, and zlib. If desired, remove
them now:

rm -f /usr/lib/lib{bfd,opcodes}.a
rm -f /usr/lib/libbz2.a
rm -f /usr/lib/lib{com_err,e2p,ext2fs,ss}.a
rm -f /usr/lib/libltdl.a
rm -f /usr/lib/libfl.a
rm -f /usr/lib/libfl_pic.a
rm -f /usr/lib/libz.a

http://www.linuxfromscratch.org/blfs/

Linux From Scratch - Version 7.10

212

Chapter 7. System Configuration

7.1. Introduction
Booting a Linux system involves several tasks. The process must mount both virtual and real file systems, initialize
devices, activate swap, check file systems for integrity, mount any swap partitions or files, set the system clock, bring
up networking, start any daemons required by the system, and accomplish any other custom tasks needed by the user.
This process must be organized to ensure the tasks are performed in the correct order but, at the same time, be executed
as fast as possible.

7.1.1. System V
System V is the classic boot process that has been used in Unix and Unix-like systems such as Linux since about 1983.
It consists of a small program, init, that sets up basic programs such as login (via getty) and runs a script. This script,
usually named rc, controls the execution of a set of additional scripts that perform the tasks required to initialize the
system.

The init program is controlled by the /etc/inittab file and is organized into run levels that can be run by the user:

0 — halt
1 — Single user mode
2 — Multiuser, without networking
3 — Full multiuser mode
4 — User definable
5 — Full multiuser mode with display manager
6 — reboot

The usual default run level is 3 or 5.

Advantages

• Established, well understood system.

• Easy to customize.

Disadvantages

• Slower to boot. A medium speed base LFS system takes 8-12 seconds where the boot time is measured from the
first kernel message to the login prompt. Network connectivity is typically established about 2 seconds after the
login prompt.

• Serial processing of boot tasks. This is related to the previous point. A delay in any process such as a file system
check, will delay the entire boot process.

• Does not directly support advanced features like control groups (cgroups), and per-user fair share scheduling.

• Adding scripts requires manual, static sequencing decisions.

Linux From Scratch - Version 7.10

213

7.2. LFS-Bootscripts-20150222
The LFS-Bootscripts package contains a set of scripts to start/stop the LFS system at bootup/shutdown. The
configuration files and procedures needed to customize the boot process are described in the following sections.

Approximate build time: less than 0.1 SBU
Required disk space: 244 KB

7.2.1. Installation of LFS-Bootscripts
Install the package:

make install

7.2.2. Contents of LFS-Bootscripts
Installed scripts: checkfs, cleanfs, console, functions, halt, ifdown, ifup, localnet, modules, mountfs,

mountvirtfs, network, rc, reboot, sendsignals, setclock, ipv4-static, swap, sysctl,
sysklogd, template, udev, and udev_retry

Installed directories: /etc/rc.d, /etc/init.d (symbolic link), /etc/sysconfig, /lib/services, /lib/lsb (symbolic link)

Short Descriptions

checkfs Checks the integrity of the file systems before they are mounted (with the exception of journal and
network based file systems)

cleanfs Removes files that should not be preserved between reboots, such as those in /var/run/ and /
var/lock/; it re-creates /var/run/utmp and removes the possibly present /etc/nologin,
/fastboot, and /forcefsck files

console Loads the correct keymap table for the desired keyboard layout; it also sets the screen font

functions Contains common functions, such as error and status checking, that are used by several bootscripts

halt Halts the system

ifdown Stops a network device

ifup Initializes a network device

localnet Sets up the system's hostname and local loopback device

modules Loads kernel modules listed in /etc/sysconfig/modules, using arguments that are also given
there

mountfs Mounts all file systems, except ones that are marked noauto or are network based

mountvirtfs Mounts virtual kernel file systems, such as proc

network Sets up network interfaces, such as network cards, and sets up the default gateway (where applicable)

rc The master run-level control script; it is responsible for running all the other bootscripts one-by-one,
in a sequence determined by the name of the symbolic links being processed

reboot Reboots the system

sendsignals Makes sure every process is terminated before the system reboots or halts

setclock Resets the kernel clock to local time in case the hardware clock is not set to UTC time

Linux From Scratch - Version 7.10

214

ipv4-static Provides the functionality needed to assign a static Internet Protocol (IP) address to a network
interface

swap Enables and disables swap files and partitions

sysctl Loads system configuration values from /etc/sysctl.conf, if that file exists, into the running
kernel

sysklogd Starts and stops the system and kernel log daemons

template A template to create custom bootscripts for other daemons

udev Prepares the /dev directory and starts Udev

udev_retry Retries failed udev uevents, and copies generated rules files from /run/udev to /etc/udev/
rules.d if required

Linux From Scratch - Version 7.10

215

7.3. Overview of Device and Module Handling
In Chapter 6, we installed the Udev package when eudev was built. Before we go into the details regarding how this
works, a brief history of previous methods of handling devices is in order.

Linux systems in general traditionally used a static device creation method, whereby a great many device nodes were
created under /dev (sometimes literally thousands of nodes), regardless of whether the corresponding hardware devices
actually existed. This was typically done via a MAKEDEV script, which contains a number of calls to the mknod
program with the relevant major and minor device numbers for every possible device that might exist in the world.

Using the Udev method, only those devices which are detected by the kernel get device nodes created for them. Because
these device nodes will be created each time the system boots, they will be stored on a devtmpfs file system (a virtual
file system that resides entirely in system memory). Device nodes do not require much space, so the memory that is
used is negligible.

7.3.1. History

In February 2000, a new filesystem called devfs was merged into the 2.3.46 kernel and was made available during
the 2.4 series of stable kernels. Although it was present in the kernel source itself, this method of creating devices
dynamically never received overwhelming support from the core kernel developers.

The main problem with the approach adopted by devfs was the way it handled device detection, creation, and naming.
The latter issue, that of device node naming, was perhaps the most critical. It is generally accepted that if device names
are allowed to be configurable, then the device naming policy should be up to a system administrator, not imposed on
them by any particular developer(s). The devfs file system also suffered from race conditions that were inherent in
its design and could not be fixed without a substantial revision to the kernel. It was marked as deprecated for a long
period – due to a lack of maintenance – and was finally removed from the kernel in June, 2006.

With the development of the unstable 2.5 kernel tree, later released as the 2.6 series of stable kernels, a new virtual
filesystem called sysfs came to be. The job of sysfs is to export a view of the system's hardware configuration to
userspace processes. With this userspace-visible representation, the possibility of developing a userspace replacement
for devfs became much more realistic.

7.3.2. Udev Implementation

7.3.2.1. Sysfs

The sysfs filesystem was mentioned briefly above. One may wonder how sysfs knows about the devices present
on a system and what device numbers should be used for them. Drivers that have been compiled into the kernel directly
register their objects with a sysfs (devtmpfs internally) as they are detected by the kernel. For drivers compiled as
modules, this registration will happen when the module is loaded. Once the sysfs filesystem is mounted (on /sys),
data which the drivers register with sysfs are available to userspace processes and to udevd for processing (including
modifications to device nodes).

7.3.2.2. Device Node Creation

Device files are created by the kernel by the devtmpfs filesystem. Any driver that wishes to register a device node
will go through the devtmpfs (via the driver core) to do it. When a devtmpfs instance is mounted on /dev, the
device node will initially be created with a fixed name, permissions, and owner.

Linux From Scratch - Version 7.10

216

A short time later, the kernel will send a uevent to udevd. Based on the rules specified in the files within the /etc/
udev/rules.d, /lib/udev/rules.d, and /run/udev/rules.d directories, udevd will create additional
symlinks to the device node, or change its permissions, owner, or group, or modify the internal udevd database entry
(name) for that object.

The rules in these three directories are numbered and all three directories are merged together. If udevd can't find a
rule for the device it is creating, it will leave the permissions and ownership at whatever devtmpfs used initially.

7.3.2.3. Module Loading

Device drivers compiled as modules may have aliases built into them. Aliases are visible in the output of the modinfo
program and are usually related to the bus-specific identifiers of devices supported by a module. For example,
the snd-fm801 driver supports PCI devices with vendor ID 0x1319 and device ID 0x0801, and has an alias of
“pci:v00001319d00000801sv*sd*bc04sc01i*”. For most devices, the bus driver exports the alias of the driver that
would handle the device via sysfs. E.g., the /sys/bus/pci/devices/0000:00:0d.0/modalias file might
contain the string “pci:v00001319d00000801sv00001319sd00001319bc04sc01i00”. The default rules provided with
Udev will cause udevd to call out to /sbin/modprobe with the contents of the MODALIAS uevent environment variable
(which should be the same as the contents of the modalias file in sysfs), thus loading all modules whose aliases
match this string after wildcard expansion.

In this example, this means that, in addition to snd-fm801, the obsolete (and unwanted) forte driver will be loaded if it
is available. See below for ways in which the loading of unwanted drivers can be prevented.

The kernel itself is also able to load modules for network protocols, filesystems and NLS support on demand.

7.3.2.4. Handling Hotpluggable/Dynamic Devices

When you plug in a device, such as a Universal Serial Bus (USB) MP3 player, the kernel recognizes that the device is
now connected and generates a uevent. This uevent is then handled by udevd as described above.

7.3.3. Problems with Loading Modules and Creating Devices

There are a few possible problems when it comes to automatically creating device nodes.

7.3.3.1. A kernel module is not loaded automatically

Udev will only load a module if it has a bus-specific alias and the bus driver properly exports the necessary aliases to
sysfs. In other cases, one should arrange module loading by other means. With Linux-4.7.2, Udev is known to load
properly-written drivers for INPUT, IDE, PCI, USB, SCSI, SERIO, and FireWire devices.

To determine if the device driver you require has the necessary support for Udev, run modinfo with the module name
as the argument. Now try locating the device directory under /sys/bus and check whether there is a modalias
file there.

If the modalias file exists in sysfs, the driver supports the device and can talk to it directly, but doesn't have the
alias, it is a bug in the driver. Load the driver without the help from Udev and expect the issue to be fixed later.

If there is no modalias file in the relevant directory under /sys/bus, this means that the kernel developers have
not yet added modalias support to this bus type. With Linux-4.7.2, this is the case with ISA busses. Expect this issue
to be fixed in later kernel versions.

Udev is not intended to load “wrapper” drivers such as snd-pcm-oss and non-hardware drivers such as loop at all.

Linux From Scratch - Version 7.10

217

7.3.3.2. A kernel module is not loaded automatically, and Udev is not intended to load it

If the “wrapper” module only enhances the functionality provided by some other module (e.g., snd-pcm-oss enhances
the functionality of snd-pcm by making the sound cards available to OSS applications), configure modprobe to load
the wrapper after Udev loads the wrapped module. To do this, add a “softdep” line in any /etc/modprobe.d/
<filename>.conf file. For example:

softdep snd-pcm post: snd-pcm-oss

Note that the “softdep” command also allows pre: dependencies, or a mixture of both pre: and post:. See the
modprobe.d(5) manual page for more information on “softdep” syntax and capabilities.

If the module in question is not a wrapper and is useful by itself, configure the modules bootscript to load this module
on system boot. To do this, add the module name to the /etc/sysconfig/modules file on a separate line. This
works for wrapper modules too, but is suboptimal in that case.

7.3.3.3. Udev loads some unwanted module

Either don't build the module, or blacklist it in a /etc/modprobe.d/blacklist.conf file as done with the forte
module in the example below:

blacklist forte

Blacklisted modules can still be loaded manually with the explicit modprobe command.

7.3.3.4. Udev creates a device incorrectly, or makes a wrong symlink

This usually happens if a rule unexpectedly matches a device. For example, a poorly-written rule can match both a
SCSI disk (as desired) and the corresponding SCSI generic device (incorrectly) by vendor. Find the offending rule and
make it more specific, with the help of the udevadm info command.

7.3.3.5. Udev rule works unreliably

This may be another manifestation of the previous problem. If not, and your rule uses sysfs attributes, it may be a
kernel timing issue, to be fixed in later kernels. For now, you can work around it by creating a rule that waits for the
used sysfs attribute and appending it to the /etc/udev/rules.d/10-wait_for_sysfs.rules file (create
this file if it does not exist). Please notify the LFS Development list if you do so and it helps.

7.3.3.6. Udev does not create a device

Further text assumes that the driver is built statically into the kernel or already loaded as a module, and that you have
already checked that Udev doesn't create a misnamed device.

Udev has no information needed to create a device node if a kernel driver does not export its data to sysfs. This
is most common with third party drivers from outside the kernel tree. Create a static device node in /lib/udev/
devices with the appropriate major/minor numbers (see the file devices.txt inside the kernel documentation or
the documentation provided by the third party driver vendor). The static device node will be copied to /dev by udev.

7.3.3.7. Device naming order changes randomly after rebooting

This is due to the fact that Udev, by design, handles uevents and loads modules in parallel, and thus in an unpredictable
order. This will never be “fixed”. You should not rely upon the kernel device names being stable. Instead, create your
own rules that make symlinks with stable names based on some stable attributes of the device, such as a serial number
or the output of various *_id utilities installed by Udev. See Section 7.4, “Managing Devices” and Section 7.5, “General
Network Configuration” for examples.

Linux From Scratch - Version 7.10

218

7.3.4. Useful Reading
Additional helpful documentation is available at the following sites:

• A Userspace Implementation of devfs http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-
Hartman-OLS2003.pdf

• The sysfs Filesystem http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf

7.4. Managing Devices

7.4.1. Network Devices
Udev, by default, names network devices according to Firmware/BIOS data or physical characteristics like the bus,
slot, or MAC address. The purpose of this naming convention is to ensure that network devices are named consistently
and not based on the time the network card was discovered. For example, on a computer having two network cards
made by Intel and Realtek, the network card manufactured by Intel may become eth0 and the Realtek card becomes
eth1. In some cases, after a reboot the cards get renumbered the other way around.

In the new naming scheme, typical network device names would then be something like enp5s0 or wlp3s0. If this
naming convention is not desired, the traditional naming scheme or a custom scheme can be implemented.

7.4.1.1. Disabling Persistent Naming on the Kernel Command Line

The traditional naming scheme using eth0, eth1, etc can be restored by adding net.ifnames=0 on the kernel
command line. This is most appropriate for those systems that have only one ethernet device of the same type. Laptops
often have multiple ethernet connections that are named eth0 and wlan0 and are also candidates for this method. The
command line is passed in the GRUB configuration file. See Section 8.4.4, “Creating the GRUB Configuration File”.

7.4.1.2. Creating Custom Udev Rules

The naming scheme can be customized by creating custom Udev rules. A script has been included that generates the
initial rules. Generate these rules by running:

bash /lib/udev/init-net-rules.sh

Now, inspect the /etc/udev/rules.d/70-persistent-net.rules file, to find out which name was
assigned to which network device:

cat /etc/udev/rules.d/70-persistent-net.rules

Note
In some cases such as when MAC addresess have been assigned to a network card manually or in a virtual
environment such as Qemu or Xen, the network rules file may not have been generated because addresses are
not consistently assigned. In these cases, this method cannot be used.

The file begins with a comment block followed by two lines for each NIC. The first line for each NIC is a commented
description showing its hardware IDs (e.g. its PCI vendor and device IDs, if it's a PCI card), along with its driver in
parentheses, if the driver can be found. Neither the hardware ID nor the driver is used to determine which name to
give an interface; this information is only for reference. The second line is the Udev rule that matches this NIC and
actually assigns it a name.

All Udev rules are made up of several keys, separated by commas and optional whitespace. This rule's keys and an
explanation of each of them are as follows:

http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf

Linux From Scratch - Version 7.10

219

• SUBSYSTEM=="net" - This tells Udev to ignore devices that are not network cards.

• ACTION=="add" - This tells Udev to ignore this rule for a uevent that isn't an add ("remove" and "change"
uevents also happen, but don't need to rename network interfaces).

• DRIVERS=="?*" - This exists so that Udev will ignore VLAN or bridge sub-interfaces (because these sub-
interfaces do not have drivers). These sub-interfaces are skipped because the name that would be assigned would
collide with their parent devices.

• ATTR{address} - The value of this key is the NIC's MAC address.

• ATTR{type}=="1" - This ensures the rule only matches the primary interface in the case of certain wireless
drivers, which create multiple virtual interfaces. The secondary interfaces are skipped for the same reason that
VLAN and bridge sub-interfaces are skipped: there would be a name collision otherwise.

• NAME - The value of this key is the name that Udev will assign to this interface.

The value of NAME is the important part. Make sure you know which name has been assigned to each of your network
cards before proceeding, and be sure to use that NAME value when creating your configuration files below.

7.4.2. CD-ROM symlinks
Some software that you may want to install later (e.g., various media players) expect the /dev/cdrom and /dev/
dvd symlinks to exist, and to point to a CD-ROM or DVD-ROM device. Also, it may be convenient to put references
to those symlinks into /etc/fstab. Udev comes with a script that will generate rules files to create these symlinks
for you, depending on the capabilities of each device, but you need to decide which of two modes of operation you
wish to have the script use.

First, the script can operate in “by-path” mode (used by default for USB and FireWire devices), where the rules it
creates depend on the physical path to the CD or DVD device. Second, it can operate in “by-id” mode (default for IDE
and SCSI devices), where the rules it creates depend on identification strings stored in the CD or DVD device itself.
The path is determined by Udev's path_id script, and the identification strings are read from the hardware by its ata_id
or scsi_id programs, depending on which type of device you have.

There are advantages to each approach; the correct approach to use will depend on what kinds of device changes may
happen. If you expect the physical path to the device (that is, the ports and/or slots that it plugs into) to change, for
example because you plan on moving the drive to a different IDE port or a different USB connector, then you should
use the “by-id” mode. On the other hand, if you expect the device's identification to change, for example because it
may die, and you would replace it with a different device with the same capabilities and which is plugged into the same
connectors, then you should use the “by-path” mode.

If either type of change is possible with your drive, then choose a mode based on the type of change you expect to
happen more often.

Important
External devices (for example, a USB-connected CD drive) should not use by-path persistence, because each
time the device is plugged into a new external port, its physical path will change. All externally-connected
devices will have this problem if you write Udev rules to recognize them by their physical path; the problem
is not limited to CD and DVD drives.

If you wish to see the values that the Udev scripts will use, then for the appropriate CD-ROM device, find the
corresponding directory under /sys (e.g., this can be /sys/block/hdd) and run a command similar to the
following:

udevadm test /sys/block/hdd

Linux From Scratch - Version 7.10

220

Look at the lines containing the output of various *_id programs. The “by-id” mode will use the ID_SERIAL value
if it exists and is not empty, otherwise it will use a combination of ID_MODEL and ID_REVISION. The “by-path”
mode will use the ID_PATH value.

If the default mode is not suitable for your situation, then the following modification can be made to the /etc/udev/
rules.d/83-cdrom-symlinks.rules file, as follows (where mode is one of “by-id” or “by-path”):

sed -i -e 's/"write_cd_rules"/"write_cd_rules mode"/' \
 /etc/udev/rules.d/83-cdrom-symlinks.rules

Note that it is not necessary to create the rules files or symlinks at this time, because you have bind-mounted the host's
/dev directory into the LFS system, and we assume the symlinks exist on the host. The rules and symlinks will be
created the first time you boot your LFS system.

However, if you have multiple CD-ROM devices, then the symlinks generated at that time may point to different devices
than they point to on your host, because devices are not discovered in a predictable order. The assignments created
when you first boot the LFS system will be stable, so this is only an issue if you need the symlinks on both systems
to point to the same device. If you need that, then inspect (and possibly edit) the generated /etc/udev/rules.d/
70-persistent-cd.rules file after booting, to make sure the assigned symlinks match what you need.

7.4.3. Dealing with duplicate devices
As explained in Section 7.3, “Overview of Device and Module Handling”, the order in which devices with the same
function appear in /dev is essentially random. E.g., if you have a USB web camera and a TV tuner, sometimes /dev/
video0 refers to the camera and /dev/video1 refers to the tuner, and sometimes after a reboot the order changes
to the opposite one. For all classes of hardware except sound cards and network cards, this is fixable by creating Udev
rules for custom persistent symlinks. The case of network cards is covered separately in Section 7.5, “General Network
Configuration”, and sound card configuration can be found in BLFS.

For each of your devices that is likely to have this problem (even if the problem doesn't exist in your current Linux
distribution), find the corresponding directory under /sys/class or /sys/block. For video devices, this may be
/sys/class/video4linux/videoX. Figure out the attributes that identify the device uniquely (usually, vendor
and product IDs and/or serial numbers work):

udevadm info -a -p /sys/class/video4linux/video0

Then write rules that create the symlinks, e.g.:

cat > /etc/udev/rules.d/83-duplicate_devs.rules << "EOF"

Persistent symlinks for webcam and tuner
KERNEL=="video*", ATTRS{idProduct}=="1910", ATTRS{idVendor}=="0d81", \
 SYMLINK+="webcam"
KERNEL=="video*", ATTRS{device}=="0x036f", ATTRS{vendor}=="0x109e", \
 SYMLINK+="tvtuner"

EOF

The result is that /dev/video0 and /dev/video1 devices still refer randomly to the tuner and the web camera
(and thus should never be used directly), but there are symlinks /dev/tvtuner and /dev/webcam that always
point to the correct device.

http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/devices.html

Linux From Scratch - Version 7.10

221

7.5. General Network Configuration
This section only applies if a network card is to be configured.

If a network card will not be used, there is likely no need to create any configuration files relating to network cards. If
that is the case, you will need to remove the network symlinks from all run-level directories (/etc/rc.d/rc*.
d) after the bootscripts are installed in Section 7.2, “LFS-Bootscripts-20150222”.

7.5.1. Creating Network Interface Configuration Files
Which interfaces are brought up and down by the network script usually depends on the files in /etc/sysconfig/.
This directory should contain a file for each interface to be configured, such as ifconfig.xyz, where “xyz” is
required to be a Network Card Interface name (e.g. eth0). Inside this file are attributes to this interface, such as its IP
address(es), subnet masks, and so forth. It is necessary that the stem of the filename be ifconfig.

Note

If the procedure in the previous section was not used, Udev will assign network card interface names based
on system physical characteristics such as enp2s1. If you are not sure what your interface name is, you can
always run ip link after you have booted your system. Again, it is important that ifconfig.xyz is named after
correct network card interface name (e.g. ifconfig.enp2s1 or ifconfig.eth0) or your network interface will not
be initialized during the boot process.

The following command creates a sample file for the eth0 device with a static IP address:

cd /etc/sysconfig/
cat > ifconfig.eth0 << "EOF"
ONBOOT=yes
IFACE=eth0
SERVICE=ipv4-static
IP=192.168.1.2
GATEWAY=192.168.1.1
PREFIX=24
BROADCAST=192.168.1.255
EOF

The values of these variables must be changed in every file to match the proper setup.

If the ONBOOT variable is set to “yes” the System V network script will bring up the Network Interface Card (NIC)
during booting of the system. If set to anything but “yes” the NIC will be ignored by the network script and not be
automatically brought up. The interface can be manually started or stopped with the ifup and ifdown commands.

The IFACE variable defines the interface name, for example, eth0. It is required for all network device configuration
files.

The SERVICE variable defines the method used for obtaining the IP address. The LFS-Bootscripts package has a
modular IP assignment format, and creating additional files in the /lib/services/ directory allows other IP
assignment methods. This is commonly used for Dynamic Host Configuration Protocol (DHCP), which is addressed
in the BLFS book.

The GATEWAY variable should contain the default gateway IP address, if one is present. If not, then comment out the
variable entirely.

Linux From Scratch - Version 7.10

222

The PREFIX variable contains the number of bits used in the subnet. Each octet in an IP address is 8 bits. If the subnet's
netmask is 255.255.255.0, then it is using the first three octets (24 bits) to specify the network number. If the netmask
is 255.255.255.240, it would be using the first 28 bits. Prefixes longer than 24 bits are commonly used by DSL and
cable-based Internet Service Providers (ISPs). In this example (PREFIX=24), the netmask is 255.255.255.0. Adjust the
PREFIX variable according to your specific subnet. If omitted, the PREFIX defaults to 24.

For more information see the ifup man page.

7.5.2. Creating the /etc/resolv.conf File
If the system is going to be connected to the Internet, it will need some means of Domain Name Service (DNS) name
resolution to resolve Internet domain names to IP addresses, and vice versa. This is best achieved by placing the IP
address of the DNS server, available from the ISP or network administrator, into /etc/resolv.conf. Create the
file by running the following:

cat > /etc/resolv.conf << "EOF"
Begin /etc/resolv.conf

domain <Your Domain Name>
nameserver <IP address of your primary nameserver>
nameserver <IP address of your secondary nameserver>

End /etc/resolv.conf
EOF

The domain statement can be omitted or replaced with a search statement. See the man page for resolv.conf for
more details.

Replace <IP address of the nameserver> with the IP address of the DNS most appropriate for the setup.
There will often be more than one entry (requirements demand secondary servers for fallback capability). If you only
need or want one DNS server, remove the second nameserver line from the file. The IP address may also be a router
on the local network.

Note
The Google Public IPv4 DNS addresses are 8.8.8.8 and 8.8.4.4.

7.5.3. Configuring the system hostname
During the boot process, the file /etc/hostname is used for establishing the system's hostname.

Create the /etc/hostname file and enter a hostname by running:

echo "<lfs>" > /etc/hostname

<lfs> needs to be replaced with the name given to the computer. Do not enter the Fully Qualified Domain Name
(FQDN) here. That information is put in the /etc/hosts file.

7.5.4. Customizing the /etc/hosts File
Decide on the IP address, fully-qualified domain name (FQDN), and possible aliases for use in the /etc/hosts file.
The syntax is:

IP_address myhost.example.org aliases

Linux From Scratch - Version 7.10

223

Unless the computer is to be visible to the Internet (i.e., there is a registered domain and a valid block of assigned
IP addresses—most users do not have this), make sure that the IP address is in the private network IP address range.
Valid ranges are:

Private Network Address Range Normal Prefix
10.0.0.1 - 10.255.255.254 8
172.x.0.1 - 172.x.255.254 16
192.168.y.1 - 192.168.y.254 24

x can be any number in the range 16-31. y can be any number in the range 0-255.

A valid private IP address could be 192.168.1.1. A valid FQDN for this IP could be lfs.example.org.

Even if not using a network card, a valid FQDN is still required. This is necessary for certain programs to operate
correctly.

Create the /etc/hosts file by running:

cat > /etc/hosts << "EOF"
Begin /etc/hosts (network card version)

127.0.0.1 localhost
<192.168.1.1> <HOSTNAME.example.org> [alias1] [alias2 ...]

End /etc/hosts (network card version)
EOF

The <192.168.1.1> and <HOSTNAME.example.org> values need to be changed for specific uses or
requirements (if assigned an IP address by a network/system administrator and the machine will be connected to an
existing network). The optional alias name(s) can be omitted.

If a network card is not going to be configured, create the /etc/hosts file by running:

cat > /etc/hosts << "EOF"
Begin /etc/hosts (no network card version)

127.0.0.1 <HOSTNAME.example.org> <HOSTNAME> localhost

End /etc/hosts (no network card version)
EOF

7.6. System V Bootscript Usage and Configuration

7.6.1. How Do the System V Bootscripts Work?

Linux uses a special booting facility named SysVinit that is based on a concept of run-levels. It can be quite different
from one system to another, so it cannot be assumed that because things worked in one particular Linux distribution,
they should work the same in LFS too. LFS has its own way of doing things, but it respects generally accepted standards.

Linux From Scratch - Version 7.10

224

SysVinit (which will be referred to as “init” from now on) works using a run-levels scheme. There are seven (numbered
0 to 6) run-levels (actually, there are more run-levels, but they are for special cases and are generally not used. See
init(8) for more details), and each one of those corresponds to the actions the computer is supposed to perform when
it starts up. The default run-level is 3. Here are the descriptions of the different run-levels as they are implemented:

0: halt the computer
1: single-user mode
2: multi-user mode without networking
3: multi-user mode with networking
4: reserved for customization, otherwise does the same as 3
5: same as 4, it is usually used for GUI login (like X's xdm or KDE's kdm)
6: reboot the computer

7.6.2. Configuring Sysvinit

During the kernel initialization, the first program that is run is either specified on the command line or, by default init.
This program reads the initialization file /etc/inittab. Create this file with:

cat > /etc/inittab << "EOF"
Begin /etc/inittab

id:3:initdefault:

si::sysinit:/etc/rc.d/init.d/rc S

l0:0:wait:/etc/rc.d/init.d/rc 0
l1:S1:wait:/etc/rc.d/init.d/rc 1
l2:2:wait:/etc/rc.d/init.d/rc 2
l3:3:wait:/etc/rc.d/init.d/rc 3
l4:4:wait:/etc/rc.d/init.d/rc 4
l5:5:wait:/etc/rc.d/init.d/rc 5
l6:6:wait:/etc/rc.d/init.d/rc 6

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

su:S016:once:/sbin/sulogin

1:2345:respawn:/sbin/agetty --noclear tty1 9600
2:2345:respawn:/sbin/agetty tty2 9600
3:2345:respawn:/sbin/agetty tty3 9600
4:2345:respawn:/sbin/agetty tty4 9600
5:2345:respawn:/sbin/agetty tty5 9600
6:2345:respawn:/sbin/agetty tty6 9600

End /etc/inittab
EOF

Linux From Scratch - Version 7.10

225

An explanation of this initialization file is in the man page for inittab. For LFS, the key command that is run is rc. The
initialization file above will instruct rc to run all the scripts starting with an S in the /etc/rc.d/rcS.d directory
followed by all the scripts starting with an S in the /etc/rc.d/rc?.d directory where the question mark is specified
by the initdefault value.

As a convenience, the rc script reads a library of functions in /lib/lsb/init-functions. This library also
reads an optional configuration file, /etc/sysconfig/rc.site. Any of the system configuration file parameters
described in subsequent sections can be alternatively placed in this file allowing consolidation of all system parameters
in this one file.

As a debugging convenience, the functions script also logs all output to /run/var/bootlog. Since the /run
directory is a tmpfs, this file is not persistent across boots, however it is appended to the more permanent file /var/
log/boot.log at the end of the boot process.

7.6.2.1. Changing Run Levels

Changing run-levels is done with init <runlevel>, where <runlevel> is the target run-level. For example, to
reboot the computer, a user could issue the init 6 command, which is an alias for the reboot command. Likewise, init
0 is an alias for the halt command.

There are a number of directories under /etc/rc.d that look like rc?.d (where ? is the number of the run-level)
and rcsysinit.d, all containing a number of symbolic links. Some begin with a K, the others begin with an S, and
all of them have two numbers following the initial letter. The K means to stop (kill) a service and the S means to start
a service. The numbers determine the order in which the scripts are run, from 00 to 99—the lower the number the
earlier it gets executed. When init switches to another run-level, the appropriate services are either started or stopped,
depending on the runlevel chosen.

The real scripts are in /etc/rc.d/init.d. They do the actual work, and the symlinks all point to them. K links
and S links point to the same script in /etc/rc.d/init.d. This is because the scripts can be called with different
parameters like start, stop, restart, reload, and status. When a K link is encountered, the appropriate script
is run with the stop argument. When an S link is encountered, the appropriate script is run with the start argument.

There is one exception to this explanation. Links that start with an S in the rc0.d and rc6.d directories will not cause
anything to be started. They will be called with the parameter stop to stop something. The logic behind this is that
when a user is going to reboot or halt the system, nothing needs to be started. The system only needs to be stopped.

These are descriptions of what the arguments make the scripts do:

start

The service is started.

stop

The service is stopped.

restart

The service is stopped and then started again.

reload

The configuration of the service is updated. This is used after the configuration file of a service was modified,
when the service does not need to be restarted.

status

Tells if the service is running and with which PIDs.

Linux From Scratch - Version 7.10

226

Feel free to modify the way the boot process works (after all, it is your own LFS system). The files given here are an
example of how it can be done.

7.6.3. Udev Bootscripts
The /etc/rc.d/init.d/udev initscript starts udevd, triggers any "coldplug" devices that have already been
created by the kernel and waits for any rules to complete. The script also unsets the uevent handler from the default of
/sbin/hotplug . This is done because the kernel no longer needs to call out to an external binary. Instead udevd
will listen on a netlink socket for uevents that the kernel raises.

The /etc/rc.d/init.d/udev_retry initscript takes care of re-triggering events for subsystems whose rules may rely on
filesystems that are not mounted until the mountfs script is run (in particular, /usr and /var may cause this).
This script runs after the mountfs script, so those rules (if re-triggered) should succeed the second time around.
It is configured from the /etc/sysconfig/udev_retry file; any words in this file other than comments are
considered subsystem names to trigger at retry time. To find the subsystem of a device, use udevadm info --attribute-
walk <device> where <device> is an absolute path in /dev or /sys such as /dev/sr0 or /sys/class/rtc.

7.6.3.1. Module Loading

Device drivers compiled as modules may have aliases built into them. Aliases are visible in the output of the modinfo
program and are usually related to the bus-specific identifiers of devices supported by a module. For example,
the snd-fm801 driver supports PCI devices with vendor ID 0x1319 and device ID 0x0801, and has an alias of
“pci:v00001319d00000801sv*sd*bc04sc01i*”. For most devices, the bus driver exports the alias of the driver that
would handle the device via sysfs. E.g., the /sys/bus/pci/devices/0000:00:0d.0/modalias file might
contain the string “pci:v00001319d00000801sv00001319sd00001319bc04sc01i00”. The default rules provided with
Udev will cause udevd to call out to /sbin/modprobe with the contents of the MODALIAS uevent environment variable
(which should be the same as the contents of the modalias file in sysfs), thus loading all modules whose aliases
match this string after wildcard expansion.

In this example, this means that, in addition to snd-fm801, the obsolete (and unwanted) forte driver will be loaded if it
is available. See below for ways in which the loading of unwanted drivers can be prevented.

The kernel itself is also able to load modules for network protocols, filesystems and NLS support on demand.

7.6.3.2. Handling Hotpluggable/Dynamic Devices

When you plug in a device, such as a Universal Serial Bus (USB) MP3 player, the kernel recognizes that the device is
now connected and generates a uevent. This uevent is then handled by udevd as described above.

7.6.4. Configuring the System Clock
The setclock script reads the time from the hardware clock, also known as the BIOS or the Complementary Metal Oxide
Semiconductor (CMOS) clock. If the hardware clock is set to UTC, this script will convert the hardware clock's time
to the local time using the /etc/localtime file (which tells the hwclock program which timezone the user is in).
There is no way to detect whether or not the hardware clock is set to UTC, so this needs to be configured manually.

The setclock is run via udev when the kernel detects the hardware capability upon boot. It can also be run manually
with the stop parameter to store the system time to the CMOS clock.

If you cannot remember whether or not the hardware clock is set to UTC, find out by running the hwclock --
localtime --show command. This will display what the current time is according to the hardware clock. If this
time matches whatever your watch says, then the hardware clock is set to local time. If the output from hwclock is not

Linux From Scratch - Version 7.10

227

local time, chances are it is set to UTC time. Verify this by adding or subtracting the proper amount of hours for the
timezone to the time shown by hwclock. For example, if you are currently in the MST timezone, which is also known
as GMT -0700, add seven hours to the local time.

Change the value of the UTC variable below to a value of 0 (zero) if the hardware clock is not set to UTC time.

Create a new file /etc/sysconfig/clock by running the following:

cat > /etc/sysconfig/clock << "EOF"
Begin /etc/sysconfig/clock

UTC=1

Set this to any options you might need to give to hwclock,
such as machine hardware clock type for Alphas.
CLOCKPARAMS=

End /etc/sysconfig/clock
EOF

A good hint explaining how to deal with time on LFS is available at http://www.linuxfromscratch.org/hints/downloads/
files/time.txt. It explains issues such as time zones, UTC, and the TZ environment variable.

Note

The CLOCKPARAMS and UTC paramaters may be alternatively set in the /etc/sysconfig/rc.site
file.

7.6.5. Configuring the Linux Console

This section discusses how to configure the console bootscript that sets up the keyboard map, console font and console
kernel log level. If non-ASCII characters (e.g., the copyright sign, the British pound sign and Euro symbol) will not be
used and the keyboard is a U.S. one, much of this section can be skipped. Without the configuration file, (or equivalent
settings in rc.site), the console bootscript will do nothing.

The console script reads the /etc/sysconfig/console file for configuration information. Decide which keymap
and screen font will be used. Various language-specific HOWTOs can also help with this, see http://www.tldp.
org/HOWTO/HOWTO-INDEX/other-lang.html. If still in doubt, look in the /usr/share/keymaps and /usr/
share/consolefonts directories for valid keymaps and screen fonts. Read loadkeys(1) and setfont(8)
manual pages to determine the correct arguments for these programs.

The /etc/sysconfig/console file should contain lines of the form: VARIABLE="value". The following
variables are recognized:

LOGLEVEL
This variable specifies the log level for kernel messages sent to the console as set by dmesg. Valid levels are from
"1" (no messages) to "8". The default level is "7".

KEYMAP
This variable specifies the arguments for the loadkeys program, typically, the name of keymap to load, e.g., “it”.
If this variable is not set, the bootscript will not run the loadkeys program, and the default kernel keymap will

http://www.linuxfromscratch.org/hints/downloads/files/time.txt
http://www.linuxfromscratch.org/hints/downloads/files/time.txt
http://www.tldp.org/HOWTO/HOWTO-INDEX/other-lang.html
http://www.tldp.org/HOWTO/HOWTO-INDEX/other-lang.html

Linux From Scratch - Version 7.10

228

be used. Note that a few keymaps have multiple versions with the same name (cz and its variants in qwerty/ and
qwertz/, es in olpc/ and qwerty/, and trf in fgGIod/ and qwerty/). In these cases the parent directory should also
be specified (e.g. qwerty/es) to ensure the proper keymap is loaded.

KEYMAP_CORRECTIONS
This (rarely used) variable specifies the arguments for the second call to the loadkeys program. This is useful if
the stock keymap is not completely satisfactory and a small adjustment has to be made. E.g., to include the Euro
sign into a keymap that normally doesn't have it, set this variable to “euro2”.

FONT
This variable specifies the arguments for the setfont program. Typically, this includes the font name, “-m”, and the
name of the application character map to load. E.g., in order to load the “lat1-16” font together with the “8859-1”
application character map (as it is appropriate in the USA), set this variable to “lat1-16 -m 8859-1”. In UTF-8
mode, the kernel uses the application character map for conversion of composed 8-bit key codes in the keymap
to UTF-8, and thus the argument of the "-m" parameter should be set to the encoding of the composed key codes
in the keymap.

UNICODE
Set this variable to “1”, “yes” or “true” in order to put the console into UTF-8 mode. This is useful in UTF-8 based
locales and harmful otherwise.

LEGACY_CHARSET
For many keyboard layouts, there is no stock Unicode keymap in the Kbd package. The console bootscript will
convert an available keymap to UTF-8 on the fly if this variable is set to the encoding of the available non-UTF-8
keymap.

Some examples:

• For a non-Unicode setup, only the KEYMAP and FONT variables are generally needed. E.g., for a Polish setup,
one would use:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

KEYMAP="pl2"
FONT="lat2a-16 -m 8859-2"

End /etc/sysconfig/console
EOF

• As mentioned above, it is sometimes necessary to adjust a stock keymap slightly. The following example adds the
Euro symbol to the German keymap:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

KEYMAP="de-latin1"
KEYMAP_CORRECTIONS="euro2"
FONT="lat0-16 -m 8859-15"

End /etc/sysconfig/console
EOF

Linux From Scratch - Version 7.10

229

• The following is a Unicode-enabled example for Bulgarian, where a stock UTF-8 keymap exists:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

UNICODE="1"
KEYMAP="bg_bds-utf8"
FONT="LatArCyrHeb-16"

End /etc/sysconfig/console
EOF

• Due to the use of a 512-glyph LatArCyrHeb-16 font in the previous example, bright colors are no longer available
on the Linux console unless a framebuffer is used. If one wants to have bright colors without framebuffer and can
live without characters not belonging to his language, it is still possible to use a language-specific 256-glyph font,
as illustrated below:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

UNICODE="1"
KEYMAP="bg_bds-utf8"
FONT="cyr-sun16"

End /etc/sysconfig/console
EOF

• The following example illustrates keymap autoconversion from ISO-8859-15 to UTF-8 and enabling dead keys in
Unicode mode:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

UNICODE="1"
KEYMAP="de-latin1"
KEYMAP_CORRECTIONS="euro2"
LEGACY_CHARSET="iso-8859-15"
FONT="LatArCyrHeb-16 -m 8859-15"

End /etc/sysconfig/console
EOF

• Some keymaps have dead keys (i.e., keys that don't produce a character by themselves, but put an accent on the
character produced by the next key) or define composition rules (such as: “press Ctrl+. A E to get Æ” in the
default keymap). Linux-4.7.2 interprets dead keys and composition rules in the keymap correctly only when
the source characters to be composed together are not multibyte. This deficiency doesn't affect keymaps for
European languages, because there accents are added to unaccented ASCII characters, or two ASCII characters are
composed together. However, in UTF-8 mode it is a problem, e.g., for the Greek language, where one sometimes
needs to put an accent on the letter “alpha”. The solution is either to avoid the use of UTF-8, or to install the X
window system that doesn't have this limitation in its input handling.

Linux From Scratch - Version 7.10

230

• For Chinese, Japanese, Korean and some other languages, the Linux console cannot be configured to display
the needed characters. Users who need such languages should install the X Window System, fonts that cover the
necessary character ranges, and the proper input method (e.g., SCIM, it supports a wide variety of languages).

Note

The /etc/sysconfig/console file only controls the Linux text console localization. It has nothing to
do with setting the proper keyboard layout and terminal fonts in the X Window System, with ssh sessions or
with a serial console. In such situations, limitations mentioned in the last two list items above do not apply.

7.6.6. Creating Files at Boot
At times, it is desired to create files at boot time. For instance, the /tmp/.ICE-unix directory may be desired. This
can be done by creating an entry in the /etc/sysconfig/createfiles configuration script. The format of this
file is embedded in the comments of the default configuration file.

7.6.7. Configuring the sysklogd Script
The sysklogd script invokes the syslogd program as a part of System V initialization. The -m 0 option turns off
the periodic timestamp mark that syslogd writes to the log files every 20 minutes by default. If you want to turn on this
periodic timestamp mark, edit /etc/sysconfig/rc.site and define the variable SYSKLOGD_PARMS to the
desired value. For instance, to remove all parameters, set the variable to a null value:

SYSKLOGD_PARMS=

See man syslogd for more options.

7.6.8. The rc.site File
The optional /etc/sysconfig/rc.site file contains settings that are automatically set for each SystemV boot
script. It can alternatively set the values specified in the hostname, console, and clock files in the /etc/
sysconfig/ directory. If the associated variables are present in both these separate files and rc.site, the values
in the script specific files have precedence.

rc.site also contains parameters that can customize other aspects of the boot process. Setting the IPROMPT variable
will enable selective running of bootscripts. Other options are described in the file comments. The default version of
the file is as follows:

rc.site
Optional parameters for boot scripts.

Distro Information
These values, if specified here, override the defaults
#DISTRO="Linux From Scratch" # The distro name
#DISTRO_CONTACT="lfs-dev@linuxfromscratch.org" # Bug report address
#DISTRO_MINI="LFS" # Short name used in filenames for distro config

Define custom colors used in messages printed to the screen

Please consult `man console_codes` for more information
under the "ECMA-48 Set Graphics Rendition" section

Linux From Scratch - Version 7.10

231

#
Warning: when switching from a 8bit to a 9bit font,
the linux console will reinterpret the bold (1;) to
the top 256 glyphs of the 9bit font. This does
not affect framebuffer consoles

These values, if specified here, override the defaults
#BRACKET="\\033[1;34m" # Blue
#FAILURE="\\033[1;31m" # Red
#INFO="\\033[1;36m" # Cyan
#NORMAL="\\033[0;39m" # Grey
#SUCCESS="\\033[1;32m" # Green
#WARNING="\\033[1;33m" # Yellow

Use a colored prefix
These values, if specified here, override the defaults
#BMPREFIX=" "
#SUCCESS_PREFIX="${SUCCESS} * ${NORMAL}"
#FAILURE_PREFIX="${FAILURE}*****${NORMAL}"
#WARNING_PREFIX="${WARNING} *** ${NORMAL}"

Manually seet the right edge of message output (characters)
Useful when resetting console font during boot to override
automatic screen width detection
#COLUMNS=120

Interactive startup
#IPROMPT="yes" # Whether to display the interactive boot prompt
#itime="3" # The amount of time (in seconds) to display the prompt

The total length of the distro welcome string, without escape codes
#wlen=$(echo "Welcome to ${DISTRO}" | wc -c)
#welcome_message="Welcome to ${INFO}${DISTRO}${NORMAL}"

The total length of the interactive string, without escape codes
#ilen=$(echo "Press 'I' to enter interactive startup" | wc -c)
#i_message="Press '${FAILURE}I${NORMAL}' to enter interactive startup"

Set scripts to skip the file system check on reboot
#FASTBOOT=yes

Skip reading from the console
#HEADLESS=yes

Write out fsck progress if yes
#VERBOSE_FSCK=no

Linux From Scratch - Version 7.10

232

Speed up boot without waiting for settle in udev
#OMIT_UDEV_SETTLE=y

Speed up boot without waiting for settle in udev_retry
#OMIT_UDEV_RETRY_SETTLE=yes

Skip cleaning /tmp if yes
#SKIPTMPCLEAN=no

For setclock
#UTC=1
#CLOCKPARAMS=

For consolelog (Note that the default, 7=debug, is noisy)
#LOGLEVEL=7

For network
#HOSTNAME=mylfs

Delay between TERM and KILL signals at shutdown
#KILLDELAY=3

Optional sysklogd parameters
#SYSKLOGD_PARMS="-m 0"

Console parameters
#UNICODE=1
#KEYMAP="de-latin1"
#KEYMAP_CORRECTIONS="euro2"
#FONT="lat0-16 -m 8859-15"
#LEGACY_CHARSET=

7.6.8.1. Customizing the Boot and Shutdown Scripts

The LFS boot scripts boot and shut down a system in a fairly efficient manner, but there are a few tweaks that you can
make in the rc.site file to improve speed even more and to adjust messages according to your preferences. To do this,
adjust the settings in the /etc/sysconfig/rc.site file above.

• During the boot script udev, there is a call to udev settle that requires some time to complete. This time may
or may not be required depending on devices present in the system. If you only have simple partitions and a
single ethernet card, the boot process will probably not need to wait for this command. To skip it, set the variable
OMIT_UDEV_SETTLE=y.

• The boot script udev_retry also runs udev settle by default. This command is only needed by default if the /
var directory is separately mounted. This is because the clock needs the file /var/lib/hwclock/adjtime.
Other customizations may also need to wait for udev to complete, but in many installations it is not needed. Skip
the command by setting the variable OMIT_UDEV_RETRY_SETTLE=y.

Linux From Scratch - Version 7.10

233

• By default, the file system checks are silent. This can appear to be a delay during the bootup process. To turn on
the fsck output, set the variable VERBOSE_FSCK=y.

• When rebooting, you may want to skip the filesystem check, fsck, completely. To do this, either create the file /
fastboot or reboot the system with the command /sbin/shutdown -f -r now. On the other hand, you can force
all file systems to be checked by creating /forcefsck or running shutdown with the -F parameter instead of -
f.

Setting the variable FASTBOOT=y will disable fsck during the boot process until it is removed. This is not
recommended on a permanent basis.

• Normally, all files in the /tmp directory are deleted at boot time. Depending on the number of files or directories
present, this can cause a noticeable delay in the boot process. To skip removing these files set the variable
SKIPTMPCLEAN=y.

• During shutdown, the init program sends a TERM signal to each program it has started (e.g. agetty), waits for a
set time (default 3 seconds), and sends each process a KILL signal and waits again. This process is repeated in
the sendsignals script for any processes that are not shut down by their own scripts. The delay for init can be set
by passing a parameter. For example to remove the delay in init, pass the -t0 parameter when shutting down or
rebooting (e.g. /sbin/shutdown -t0 -r now). The delay for the sendsignals script can be skipped by setting the
parameter KILLDELAY=0.

7.7. The Bash Shell Startup Files
The shell program /bin/bash (hereafter referred to as “the shell”) uses a collection of startup files to help create an
environment to run in. Each file has a specific use and may affect login and interactive environments differently. The
files in the /etc directory provide global settings. If an equivalent file exists in the home directory, it may override
the global settings.

An interactive login shell is started after a successful login, using /bin/login, by reading the /etc/passwd file.
An interactive non-login shell is started at the command-line (e.g., [prompt]$/bin/bash). A non-interactive shell is
usually present when a shell script is running. It is non-interactive because it is processing a script and not waiting for
user input between commands.

For more information, see info bash under the Bash Startup Files and Interactive Shells section.

The files /etc/profile and ~/.bash_profile are read when the shell is invoked as an interactive login shell.

The base /etc/profile below sets some environment variables necessary for native language support. Setting them
properly results in:

• The output of programs translated into the native language

• Correct classification of characters into letters, digits and other classes. This is necessary for bash to properly
accept non-ASCII characters in command lines in non-English locales

• The correct alphabetical sorting order for the country

• Appropriate default paper size

• Correct formatting of monetary, time, and date values

Replace <ll> below with the two-letter code for the desired language (e.g., “en”) and <CC> with the two-letter code
for the appropriate country (e.g., “GB”). <charmap> should be replaced with the canonical charmap for your chosen
locale. Optional modifiers such as “@euro” may also be present.

Linux From Scratch - Version 7.10

234

The list of all locales supported by Glibc can be obtained by running the following command:

locale -a

Charmaps can have a number of aliases, e.g., “ISO-8859-1” is also referred to as “iso8859-1” and “iso88591”. Some
applications cannot handle the various synonyms correctly (e.g., require that “UTF-8” is written as “UTF-8”, not “utf8”),
so it is safest in most cases to choose the canonical name for a particular locale. To determine the canonical name,
run the following command, where <locale name> is the output given by locale -a for your preferred locale
(“en_GB.iso88591” in our example).

LC_ALL=<locale name> locale charmap

For the “en_GB.iso88591” locale, the above command will print:

ISO-8859-1

This results in a final locale setting of “en_GB.ISO-8859-1”. It is important that the locale found using the heuristic
above is tested prior to it being added to the Bash startup files:

LC_ALL=<locale name> locale language
LC_ALL=<locale name> locale charmap
LC_ALL=<locale name> locale int_curr_symbol
LC_ALL=<locale name> locale int_prefix

The above commands should print the language name, the character encoding used by the locale, the local currency,
and the prefix to dial before the telephone number in order to get into the country. If any of the commands above fail
with a message similar to the one shown below, this means that your locale was either not installed in Chapter 6 or is
not supported by the default installation of Glibc.

locale: Cannot set LC_* to default locale: No such file or directory

If this happens, you should either install the desired locale using the localedef command, or consider choosing a different
locale. Further instructions assume that there are no such error messages from Glibc.

Some packages beyond LFS may also lack support for your chosen locale. One example is the X library (part of the X
Window System), which outputs the following error message if the locale does not exactly match one of the character
map names in its internal files:

Warning: locale not supported by Xlib, locale set to C

In several cases Xlib expects that the character map will be listed in uppercase notation with canonical dashes. For
instance, "ISO-8859-1" rather than "iso88591". It is also possible to find an appropriate specification by removing the
charmap part of the locale specification. This can be checked by running the locale charmap command in both locales.
For example, one would have to change "de_DE.ISO-8859-15@euro" to "de_DE@euro" in order to get this locale
recognized by Xlib.

Other packages can also function incorrectly (but may not necessarily display any error messages) if the locale name
does not meet their expectations. In those cases, investigating how other Linux distributions support your locale might
provide some useful information.

Linux From Scratch - Version 7.10

235

Once the proper locale settings have been determined, create the /etc/profile file:

cat > /etc/profile << "EOF"
Begin /etc/profile

export LANG=<ll>_<CC>.<charmap><@modifiers>

End /etc/profile
EOF

The “C” (default) and “en_US” (the recommended one for United States English users) locales are different. “C” uses
the US-ASCII 7-bit character set, and treats bytes with the high bit set as invalid characters. That's why, e.g., the ls
command substitutes them with question marks in that locale. Also, an attempt to send mail with such characters from
Mutt or Pine results in non-RFC-conforming messages being sent (the charset in the outgoing mail is indicated as
“unknown 8-bit”). So you can use the “C” locale only if you are sure that you will never need 8-bit characters.

UTF-8 based locales are not supported well by some programs. Work is in progress to document and, if possible, fix
such problems, see http://www.linuxfromscratch.org/blfs/view/7.10/introduction/locale-issues.html.

7.8. Creating the /etc/inputrc File
The inputrc file handles keyboard mapping for specific situations. This file is the startup file used by Readline —
the input-related library — used by Bash and most other shells.

Most people do not need user-specific keyboard mappings so the command below creates a global /etc/inputrc
used by everyone who logs in. If you later decide you need to override the defaults on a per-user basis, you can create
a .inputrc file in the user's home directory with the modified mappings.

For more information on how to edit the inputrc file, see info bash under the Readline Init File section. info readline
is also a good source of information.

http://www.linuxfromscratch.org/blfs/view/7.10/introduction/locale-issues.html

Linux From Scratch - Version 7.10

236

Below is a generic global inputrc along with comments to explain what the various options do. Note that comments
cannot be on the same line as commands. Create the file using the following command:

cat > /etc/inputrc << "EOF"
Begin /etc/inputrc
Modified by Chris Lynn <roryo@roryo.dynup.net>

Allow the command prompt to wrap to the next line
set horizontal-scroll-mode Off

Enable 8bit input
set meta-flag On
set input-meta On

Turns off 8th bit stripping
set convert-meta Off

Keep the 8th bit for display
set output-meta On

none, visible or audible
set bell-style none

All of the following map the escape sequence of the value
contained in the 1st argument to the readline specific functions
"\eOd": backward-word
"\eOc": forward-word

for linux console
"\e[1~": beginning-of-line
"\e[4~": end-of-line
"\e[5~": beginning-of-history
"\e[6~": end-of-history
"\e[3~": delete-char
"\e[2~": quoted-insert

for xterm
"\eOH": beginning-of-line
"\eOF": end-of-line

for Konsole
"\e[H": beginning-of-line
"\e[F": end-of-line

End /etc/inputrc
EOF

Linux From Scratch - Version 7.10

237

7.9. Creating the /etc/shells File
The shells file contains a list of login shells on the system. Applications use this file to determine whether a shell is
valid. For each shell a single line should be present, consisting of the shell's path, relative to the root of the directory
structure (/).

For example, this file is consulted by chsh to determine whether an unprivileged user may change the login shell for
her own account. If the command name is not listed, the user will be denied of change.

It is a requirement for applications such as GDM which does not populate the face browser if it can't find /etc/
shells, or FTP daemons which traditionally disallow access to users with shells not included in this file.

cat > /etc/shells << "EOF"
Begin /etc/shells

/bin/sh
/bin/bash

End /etc/shells
EOF

Linux From Scratch - Version 7.10

238

Chapter 8. Making the LFS System Bootable

8.1. Introduction
It is time to make the LFS system bootable. This chapter discusses creating an fstab file, building a kernel for the
new LFS system, and installing the GRUB boot loader so that the LFS system can be selected for booting at startup.

8.2. Creating the /etc/fstab File
The /etc/fstab file is used by some programs to determine where file systems are to be mounted by default, in
which order, and which must be checked (for integrity errors) prior to mounting. Create a new file systems table like this:

cat > /etc/fstab << "EOF"
Begin /etc/fstab

file system mount-point type options dump fsck
order

/dev/<xxx> / <fff> defaults 1 1
/dev/<yyy> swap swap pri=1 0 0
proc /proc proc nosuid,noexec,nodev 0 0
sysfs /sys sysfs nosuid,noexec,nodev 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
tmpfs /run tmpfs defaults 0 0
devtmpfs /dev devtmpfs mode=0755,nosuid 0 0

End /etc/fstab
EOF

Replace <xxx>, <yyy>, and <fff> with the values appropriate for the system, for example, sda2, sda5, and ext4.
For details on the six fields in this file, see man 5 fstab.

Filesystems with MS-DOS or Windows origin (i.e.: vfat, ntfs, smbfs, cifs, iso9660, udf) need the “iocharset” mount
option in order for non-ASCII characters in file names to be interpreted properly. The value of this option should be the
same as the character set of your locale, adjusted in such a way that the kernel understands it. This works if the relevant
character set definition (found under File systems -> Native Language Support) has been compiled into the kernel or
built as a module. The “codepage” option is also needed for vfat and smbfs filesystems. It should be set to the codepage
number used under MS-DOS in your country. E.g., in order to mount USB flash drives, a ru_RU.KOI8-R user would
need the following in the options portion of its mount line in /etc/fstab:

noauto,user,quiet,showexec,iocharset=koi8r,codepage=866

The corresponding options fragment for ru_RU.UTF-8 users is:

noauto,user,quiet,showexec,iocharset=utf8,codepage=866

Linux From Scratch - Version 7.10

239

Note

In the latter case, the kernel emits the following message:

FAT: utf8 is not a recommended IO charset for FAT filesystems,
 filesystem will be case sensitive!

This negative recommendation should be ignored, since all other values of the “iocharset” option result in
wrong display of filenames in UTF-8 locales.

It is also possible to specify default codepage and iocharset values for some filesystems during kernel configuration.
The relevant parameters are named “Default NLS Option” (CONFIG_NLS_DEFAULT), “Default Remote NLS
Option” (CONFIG_SMB_NLS_DEFAULT), “Default codepage for FAT” (CONFIG_FAT_DEFAULT_CODEPAGE),
and “Default iocharset for FAT” (CONFIG_FAT_DEFAULT_IOCHARSET). There is no way to specify these settings
for the ntfs filesystem at kernel compilation time.

It is possible to make the ext3 filesystem reliable across power failures for some hard disk types. To do this, add the
barrier=1 mount option to the appropriate entry in /etc/fstab. To check if the disk drive supports this option,
run hdparm on the applicable disk drive. For example, if:

hdparm -I /dev/sda | grep NCQ

returns non-empty output, the option is supported.

Note: Logical Volume Management (LVM) based partitions cannot use the barrier option.

http://www.linuxfromscratch.org/blfs/view/7.10/general/hdparm.html

Linux From Scratch - Version 7.10

240

8.3. Linux-4.7.2
The Linux package contains the Linux kernel.

Approximate build time: 3.0 - 49.0 SBU (typically about 6 SBU)
Required disk space: 700 - 6800 MB (typically about 800-900 MB)

8.3.1. Installation of the kernel
Building the kernel involves a few steps—configuration, compilation, and installation. Read the README file in the
kernel source tree for alternative methods to the way this book configures the kernel.

Prepare for compilation by running the following command:

make mrproper

This ensures that the kernel tree is absolutely clean. The kernel team recommends that this command be issued prior to
each kernel compilation. Do not rely on the source tree being clean after un-tarring.

Configure the kernel via a menu-driven interface. For general information on kernel configuration see http://www.
linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt. BLFS has some information regarding particular
kernel configuration requirements of packages outside of LFS at http://www.linuxfromscratch.org/blfs/view/7.10/
longindex.html#kernel-config-index. Additional information about configuring and building the kernel can be found at
http://www.kroah.com/lkn/

Note

A good starting place for setting up the kernel configuration is to run make defconfig. This will set the base
configuration to a good state that takes your current system architecture into account.

Be sure to enable or disable following features or the system might not work correctly or boot at all:

Device Drivers --->
 Generic Driver Options --->
 [] Support for uevent helper [CONFIG_UEVENT_HELPER]
 [*] Maintain a devtmpfs filesystem to mount at /dev [CONFIG_DEVTMPFS]

There are several other options that may be desired depending on the requirements for the system. For a list of options
needed for BLFS packages, see the BLFS Index of Kernel Settings (http://www.linuxfromscratch.org/blfs/view/7.10/
longindex.html#kernel-config-index).

The rationale for the above configuration items:

Support for uevent helper
Having this option set may interfere with device management when using Udev/Eudev.

Maintain a devtmpfs
This will create automated device nodes which are populated by the kernel, even without Udev running. Udev
then runs on top of this, managing permissions and adding symlinks. This configuration item is required for all
users of Udev/Eudev.

make menuconfig

http://www.linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt
http://www.linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt
http://www.linuxfromscratch.org/blfs/view/7.10/longindex.html#kernel-config-index
http://www.linuxfromscratch.org/blfs/view/7.10/longindex.html#kernel-config-index
http://www.kroah.com/lkn/
http://www.linuxfromscratch.org/blfs/view/7.10/longindex.html#kernel-config-index

Linux From Scratch - Version 7.10

241

The meaning of optional make environment variables:

LANG=<host_LANG_value> LC_ALL=
This establishes the locale setting to the one used on the host. This may be needed for a proper menuconfig ncurses
interface line drawing on a UTF-8 linux text console.
If used, be sure to replace <host_LANG_value> by the value of the $LANG variable from your host. You can
alternatively use instead the host's value of $LC_ALL or $LC_CTYPE.

Alternatively, make oldconfig may be more appropriate in some situations. See the README file for more information.

If desired, skip kernel configuration by copying the kernel config file, .config, from the host system (assuming it is
available) to the unpacked linux-4.7.2 directory. However, we do not recommend this option. It is often better to
explore all the configuration menus and create the kernel configuration from scratch.

Compile the kernel image and modules:

make

If using kernel modules, module configuration in /etc/modprobe.d may be required. Information pertaining
to modules and kernel configuration is located in Section 7.3, “Overview of Device and Module Handling” and in
the kernel documentation in the linux-4.7.2/Documentation directory. Also, modprobe.d(5) may be of
interest.

Install the modules, if the kernel configuration uses them:

make modules_install

After kernel compilation is complete, additional steps are required to complete the installation. Some files need to be
copied to the /boot directory.

Caution

If the host system has a separate /boot partition, the files copied below should go there. The easiest way to
do that is to bind /boot on the host to /mnt/lfs/boot before proceeding:

mount --bind /boot /mnt/lfs/boot

The path to the kernel image may vary depending on the platform being used. The filename below can be changed to
suit your taste, but the stem of the filename should be vmlinuz to be compatible with the automatic setup of the boot
process described in the next section. The following command assumes an x86 architecture:

cp -v arch/x86/boot/bzImage /boot/vmlinuz-4.7.2-lfs-7.10

System.map is a symbol file for the kernel. It maps the function entry points of every function in the kernel API, as
well as the addresses of the kernel data structures for the running kernel. It is used as a resource when investigating
kernel problems. Issue the following command to install the map file:

cp -v System.map /boot/System.map-4.7.2

The kernel configuration file .config produced by the make menuconfig step above contains all the configuration
selections for the kernel that was just compiled. It is a good idea to keep this file for future reference:

cp -v .config /boot/config-4.7.2

Linux From Scratch - Version 7.10

242

Install the documentation for the Linux kernel:

install -d /usr/share/doc/linux-4.7.2
cp -r Documentation/* /usr/share/doc/linux-4.7.2

It is important to note that the files in the kernel source directory are not owned by root. Whenever a package is unpacked
as user root (like we did inside chroot), the files have the user and group IDs of whatever they were on the packager's
computer. This is usually not a problem for any other package to be installed because the source tree is removed after
the installation. However, the Linux source tree is often retained for a long time. Because of this, there is a chance
that whatever user ID the packager used will be assigned to somebody on the machine. That person would then have
write access to the kernel source.

Note

In many cases, the configuration of the kernel will need to be updated for packages that will be installed later
in BLFS. Unlike other packages, it is not necessary to remove the kernel source tree after the newly built
kernel is installed.

If the kernel source tree is going to be retained, run chown -R 0:0 on the linux-4.7.2 directory to ensure
all files are owned by user root.

Warning

Some kernel documentation recommends creating a symlink from /usr/src/linux pointing to the kernel
source directory. This is specific to kernels prior to the 2.6 series and must not be created on an LFS system
as it can cause problems for packages you may wish to build once your base LFS system is complete.

Warning

The headers in the system's include directory (/usr/include) should always be the ones against
which Glibc was compiled, that is, the sanitised headers installed in Section 6.7, “Linux-4.7.2 API Headers”.
Therefore, they should never be replaced by either the raw kernel headers or any other kernel sanitized headers.

8.3.2. Configuring Linux Module Load Order

Most of the time Linux modules are loaded automatically, but sometimes it needs some specific direction. The program
that loads modules, modprobe or insmod, uses /etc/modprobe.d/usb.conf for this purpose. This file needs
to be created so that if the USB drivers (ehci_hcd, ohci_hcd and uhci_hcd) have been built as modules, they will be
loaded in the correct order; ehci_hcd needs to be loaded prior to ohci_hcd and uhci_hcd in order to avoid a warning
being output at boot time.

Linux From Scratch - Version 7.10

243

Create a new file /etc/modprobe.d/usb.conf by running the following:

install -v -m755 -d /etc/modprobe.d
cat > /etc/modprobe.d/usb.conf << "EOF"
Begin /etc/modprobe.d/usb.conf

install ohci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i ohci_hcd ; true
install uhci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i uhci_hcd ; true

End /etc/modprobe.d/usb.conf
EOF

8.3.3. Contents of Linux
Installed files: config-4.7.2, vmlinuz-4.7.2-lfs-7.10, and System.map-4.7.2
Installed directories: /lib/modules, /usr/share/doc/linux-4.7.2

Short Descriptions

config-4.7.2 Contains all the configuration selections for the kernel

vmlinuz-4.7.2-lfs-7.10 The engine of the Linux system. When turning on the computer, the kernel is the first
part of the operating system that gets loaded. It detects and initializes all components
of the computer's hardware, then makes these components available as a tree of
files to the software and turns a single CPU into a multitasking machine capable of
running scores of programs seemingly at the same time

System.map-4.7.2 A list of addresses and symbols; it maps the entry points and addresses of all the
functions and data structures in the kernel

Linux From Scratch - Version 7.10

244

8.4. Using GRUB to Set Up the Boot Process

8.4.1. Introduction

Warning

Configuring GRUB incorrectly can render your system inoperable without an alternate boot device such as a
CD-ROM. This section is not required to boot your LFS system. You may just want to modify your current
boot loader, e.g. Grub-Legacy, GRUB2, or LILO.

Ensure that an emergency boot disk is ready to “rescue” the computer if the computer becomes unusable (un-bootable).
If you do not already have a boot device, you can create one. In order for the procedure below to work, you need to
jump ahead to BLFS and install xorriso from the libisoburn package.

cd /tmp
grub-mkrescue --output=grub-img.iso
xorriso -as cdrecord -v dev=/dev/cdrw blank=as_needed grub-img.iso

Note

Most newer systems now come with system firmware that is in UEFI (Unified Extensible Firmware Interface)
mode by default. To boot LFS on these systems using the instructions here, the UEFI Mode and Secure Boot
capabilities need to be turned off. There are ways to boot with these capabilities still enabled, but then are
not covered here. For details, see the lfs-uefi.txt hint at http://www.linuxfromscratch.org/hints/downloads/
files/lfs-uefi.txt.

8.4.2. GRUB Naming Conventions
GRUB uses its own naming structure for drives and partitions in the form of (hdn,m), where n is the hard drive number
and m is the partition number. The hard drive number starts from zero, but the partition number starts from one for
normal partitions and five for extended partitions. Note that this is different from earlier versions where both numbers
started from zero. For example, partition sda1 is (hd0,1) to GRUB and sdb3 is (hd1,3). In contrast to Linux, GRUB
does not consider CD-ROM drives to be hard drives. For example, if using a CD on hdb and a second hard drive on
hdc, that second hard drive would still be (hd1).

8.4.3. Setting Up the Configuration
GRUB works by writing data to the first physical track of the hard disk. This area is not part of any file system. The
programs there access GRUB modules in the boot partition. The default location is /boot/grub/.

The location of the boot partition is a choice of the user that affects the configuration. One recommendation is to have
a separate small (suggested size is 100 MB) partition just for boot information. That way each build, whether LFS or
some commercial distro, can access the same boot files and access can be made from any booted system. If you choose
to do this, you will need to mount the separate partition, move all files in the current /boot directory (e.g. the linux
kernel you just built in the previous section) to the new partition. You will then need to unmount the partition and
remount it as /boot. If you do this, be sure to update /etc/fstab.

Using the current lfs partition will also work, but configuration for multiple systems is more difficult.

Using the above information, determine the appropriate designator for the root partition (or boot partition, if a separate
one is used). For the following example, it is assumed that the root (or separate boot) partition is sda2.

http://www.linuxfromscratch.org/blfs/view/7.10/multimedia/libisoburn.html
http://www.linuxfromscratch.org/hints/downloads/files/lfs-uefi.txt

Linux From Scratch - Version 7.10

245

Install the GRUB files into /boot/grub and set up the boot track:

Warning

The following command will overwrite the current boot loader. Do not run the command if this is not desired,
for example, if using a third party boot manager to manage the Master Boot Record (MBR).

grub-install /dev/sda

8.4.4. Creating the GRUB Configuration File
Generate /boot/grub/grub.cfg:

cat > /boot/grub/grub.cfg << "EOF"
Begin /boot/grub/grub.cfg
set default=0
set timeout=5

insmod ext2
set root=(hd0,2)

menuentry "GNU/Linux, Linux 4.7.2-lfs-7.10" {
 linux /boot/vmlinuz-4.7.2-lfs-7.10 root=/dev/sda2 ro
}
EOF

Note

From GRUB's perspective, the kernel files are relative to the partition used. If you used a separate /boot
partition, remove /boot from the above linux line. You will also need to change the set root line to point to
the boot partition.

GRUB is an extremely powerful program and it provides a tremendous number of options for booting from a wide
variety of devices, operating systems, and partition types. There are also many options for customization such as
graphical splash screens, playing sounds, mouse input, etc. The details of these options are beyond the scope of this
introduction.

Caution

There is a command, grub-mkconfig, that can write a configuration file automatically. It uses a set of scripts
in /etc/grub.d/ and will destroy any customizations that you make. These scripts are designed primarily for
non-source distributions and are not recommended for LFS. If you install a commercial Linux distribution,
there is a good chance that this program will be run. Be sure to back up your grub.cfg file.

Linux From Scratch - Version 7.10

246

Chapter 9. The End

9.1. The End
Well done! The new LFS system is installed! We wish you much success with your shiny new custom-built Linux
system.

It may be a good idea to create an /etc/lfs-release file. By having this file, it is very easy for you (and for us
if you need to ask for help at some point) to find out which LFS version is installed on the system. Create this file
by running:

echo 7.10 > /etc/lfs-release

It is also a good idea to create a file to show the status of your new system with respect to the Linux Standards Base
(LSB). To create this file, run:

cat > /etc/lsb-release << "EOF"
DISTRIB_ID="Linux From Scratch"
DISTRIB_RELEASE="7.10"
DISTRIB_CODENAME="<your name here>"
DISTRIB_DESCRIPTION="Linux From Scratch"
EOF

Be sure to put some sort of customization for the field 'DISTRIB_CODENAME' to make the system uniquely yours.

9.2. Get Counted
Now that you have finished the book, do you want to be counted as an LFS user? Head over to http://www.
linuxfromscratch.org/cgi-bin/lfscounter.php and register as an LFS user by entering your name and the first LFS version
you have used.

Let's reboot into LFS now.

9.3. Rebooting the System
Now that all of the software has been installed, it is time to reboot your computer. However, you should be aware of a
few things. The system you have created in this book is quite minimal, and most likely will not have the functionality
you would need to be able to continue forward. By installing a few extra packages from the BLFS book while still in
our current chroot environment, you can leave yourself in a much better position to continue on once you reboot into
your new LFS installation. Here are some suggestions:

• A text mode browser such as Lynx will allow you to easily view the BLFS book in one virtual terminal, while
building packages in another.

• The GPM package will allow you to perform copy/paste actions in your virtual terminals.

• If you are in a situation where static IP configuration does not meet your networking requirements, installing a
package such as dhcpcd or the client portion of dhcp may be useful.

• Installing sudo may be useful for building packages as a non-root user and easily installing the resulting packages
in your new system.

http://www.linuxfromscratch.org/cgi-bin/lfscounter.php
http://www.linuxfromscratch.org/cgi-bin/lfscounter.php
http://www.linuxfromscratch.org/blfs/view/7.10/basicnet/lynx.html
http://www.linuxfromscratch.org/blfs/view/7.10/general/gpm.html
http://www.linuxfromscratch.org/blfs/view/7.10/basicnet/dhcpcd.html
http://www.linuxfromscratch.org/blfs/view/7.10/basicnet/dhcp.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/sudo.html

Linux From Scratch - Version 7.10

247

• If you want to access your new system from a remote system within a comfortable GUI environment, install
openssh and its prerequisite, openssl.

• To make fetching files over the internet easier, install wget.

• If one or more of your disk drives have a GUID partition table (GPT), either gptfdisk or parted will be useful.

• Finally, a review of the following configuration files is also appropriate at this point.

• /etc/bashrc

• /etc/dircolors

• /etc/fstab

• /etc/hosts

• /etc/inputrc

• /etc/profile

• /etc/resolv.conf

• /etc/vimrc

• /root/.bash_profile

• /root/.bashrc

• /etc/sysconfig/network

• /etc/sysconfig/ifconfig.eth0

Now that we have said that, let's move on to booting our shiny new LFS installation for the first time! First exit from
the chroot environment:

logout

Then unmount the virtual file systems:

umount -v $LFS/dev/pts
umount -v $LFS/dev
umount -v $LFS/run
umount -v $LFS/proc
umount -v $LFS/sys

Unmount the LFS file system itself:

umount -v $LFS

If multiple partitions were created, unmount the other partitions before unmounting the main one, like this:

umount -v $LFS/usr
umount -v $LFS/home
umount -v $LFS

Now, reboot the system with:

shutdown -r now

Assuming the GRUB boot loader was set up as outlined earlier, the menu is set to boot LFS 7.10 automatically.

http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/openssh.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/openssl.html
http://www.linuxfromscratch.org/blfs/view/7.10/basicnet/wget.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/gptfdisk.html
http://www.linuxfromscratch.org/blfs/view/7.10/postlfs/parted.html

Linux From Scratch - Version 7.10

248

When the reboot is complete, the LFS system is ready for use and more software may be added to suit your needs.

9.4. What Now?
Thank you for reading this LFS book. We hope that you have found this book helpful and have learned more about
the system creation process.

Now that the LFS system is installed, you may be wondering “What next?” To answer that question, we have compiled
a list of resources for you.

• Maintenance

Bugs and security notices are reported regularly for all software. Since an LFS system is compiled from source,
it is up to you to keep abreast of such reports. There are several online resources that track such reports, some of
which are shown below:

• CERT (Computer Emergency Response Team)

CERT has a mailing list that publishes security alerts concerning various operating systems and applications.
Subscription information is available at http://www.us-cert.gov/cas/signup.html.

• Bugtraq

Bugtraq is a full-disclosure computer security mailing list. It publishes newly discovered security issues, and
occasionally potential fixes for them. Subscription information is available at http://www.securityfocus.com/
archive.

• Beyond Linux From Scratch

The Beyond Linux From Scratch book covers installation procedures for a wide range of software beyond the
scope of the LFS Book. The BLFS project is located at http://www.linuxfromscratch.org/blfs/.

• LFS Hints

The LFS Hints are a collection of educational documents submitted by volunteers in the LFS community. The
hints are available at http://www.linuxfromscratch.org/hints/list.html.

• Mailing lists

There are several LFS mailing lists you may subscribe to if you are in need of help, want to stay current with
the latest developments, want to contribute to the project, and more. See Chapter 1 - Mailing Lists for more
information.

• The Linux Documentation Project

The goal of The Linux Documentation Project (TLDP) is to collaborate on all of the issues of Linux
documentation. The TLDP features a large collection of HOWTOs, guides, and man pages. It is located at http://
www.tldp.org/.

http://www.cert.org/
http://www.us-cert.gov/cas/signup.html
http://www.securityfocus.com/archive
http://www.securityfocus.com/archive
http://www.linuxfromscratch.org/blfs/
http://www.linuxfromscratch.org/hints/list.html
http://www.tldp.org/
http://www.tldp.org/

Linux From Scratch - Version 7.10

Part IV. Appendices

Linux From Scratch - Version 7.10

250

Appendix A. Acronyms and Terms
ABI Application Binary Interface

ALFS Automated Linux From Scratch

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input/Output System

BLFS Beyond Linux From Scratch

BSD Berkeley Software Distribution

chroot change root

CMOS Complementary Metal Oxide Semiconductor

COS Class Of Service

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CVS Concurrent Versions System

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

EGA Enhanced Graphics Adapter

ELF Executable and Linkable Format

EOF End of File

EQN equation

ext2 second extended file system

ext3 third extended file system

ext4 fourth extended file system

FAQ Frequently Asked Questions

FHS Filesystem Hierarchy Standard

FIFO First-In, First Out

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GB Gigabytes

GCC GNU Compiler Collection

GID Group Identifier

GMT Greenwich Mean Time

HTML Hypertext Markup Language

IDE Integrated Drive Electronics

IEEE Institute of Electrical and Electronic Engineers

Linux From Scratch - Version 7.10

251

IO Input/Output

IP Internet Protocol

IPC Inter-Process Communication

IRC Internet Relay Chat

ISO International Organization for Standardization

ISP Internet Service Provider

KB Kilobytes

LED Light Emitting Diode

LFS Linux From Scratch

LSB Linux Standard Base

MB Megabytes

MBR Master Boot Record

MD5 Message Digest 5

NIC Network Interface Card

NLS Native Language Support

NNTP Network News Transport Protocol

NPTL Native POSIX Threading Library

OSS Open Sound System

PCH Pre-Compiled Headers

PCRE Perl Compatible Regular Expression

PID Process Identifier

PTY pseudo terminal

QOS Quality Of Service

RAM Random Access Memory

RPC Remote Procedure Call

RTC Real Time Clock

SBU Standard Build Unit

SCO The Santa Cruz Operation

SHA1 Secure-Hash Algorithm 1

TLDP The Linux Documentation Project

TFTP Trivial File Transfer Protocol

TLS Thread-Local Storage

UID User Identifier

umask user file-creation mask

USB Universal Serial Bus

UTC Coordinated Universal Time

Linux From Scratch - Version 7.10

252

UUID Universally Unique Identifier

VC Virtual Console

VGA Video Graphics Array

VT Virtual Terminal

Linux From Scratch - Version 7.10

253

Appendix B. Acknowledgments
We would like to thank the following people and organizations for their contributions to the Linux From Scratch Project.

• Gerard Beekmans <gerard@linuxfromscratch.org> – LFS Creator, LFS Project Leader

• Matthew Burgess <matthew@linuxfromscratch.org> – LFS Project Leader, LFS Technical Writer/Editor

• Bruce Dubbs <bdubbs@linuxfromscratch.org> – LFS Release Manager, LFS Technical Writer/Editor

• Jim Gifford <jim@linuxfromscratch.org> – CLFS Project Co-Leader

• Bryan Kadzban <bryan@linuxfromscratch.org> – LFS Technical Writer

• Randy McMurchy <randy@linuxfromscratch.org> – BLFS Project Leader, LFS Editor

• DJ Lucas <dj@linuxfromscratch.org> – LFS and BLFS Editor

• Ken Moffat <ken@linuxfromscratch.org> – LFS and CLFS Editor

• Ryan Oliver <ryan@linuxfromscratch.org> – CLFS Project Co-Leader

• Countless other people on the various LFS and BLFS mailing lists who helped make this book possible by giving
their suggestions, testing the book, and submitting bug reports, instructions, and their experiences with installing
various packages.

Translators
• Manuel Canales Esparcia <macana@macana-es.com> – Spanish LFS translation project

• Johan Lenglet <johan@linuxfromscratch.org> – French LFS translation project until 2008

• Jean-Philippe Mengual <jmengual@linuxfromscratch.org> – French LFS translation project 2008-present

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Portuguese LFS translation project

• Thomas Reitelbach <tr@erdfunkstelle.de> – German LFS translation project

Mirror Maintainers

North American Mirrors

• Scott Kveton <scott@osuosl.org> – lfs.oregonstate.edu mirror

• William Astle <lost@l-w.net> – ca.linuxfromscratch.org mirror

• Eujon Sellers <jpolen@rackspace.com> – lfs.introspeed.com mirror

• Justin Knierim <tim@idge.net> – lfs-matrix.net mirror

South American Mirrors

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – lfsmirror.lfs-es.info mirror

• Luis Falcon <Luis Falcon> – torredehanoi.org mirror

European Mirrors

• Guido Passet <guido@primerelay.net> – nl.linuxfromscratch.org mirror

• Bastiaan Jacques <baafie@planet.nl> – lfs.pagefault.net mirror

mailto:gerard@linuxfromscratch.org
mailto:matthew@linuxfromscratch.org
mailto:bdubbs@linuxfromscratch.org
mailto:jim@linuxfromscratch.org
mailto:bryan@linuxfromscratch.org
mailto:randy@linuxfromscratch.org
mailto:dj@linuxfromscratch.org
mailto:ken@linuxfromscratch.org
mailto:ryan@linuxfromscratch.org
mailto:macana@macana-es.com
mailto:johan@linuxfromscratch.org
mailto:jmengual@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org
mailto:tr@erdfunkstelle.de
mailto:scott@osuosl.org
mailto:lost@l-w.net
mailto:eujon.sellers@gmail.com
mailto:justin@knierim.org
mailto:manuel@linuxfromscratch.org
mailto:lfalcon@thymbra.com
mailto:guido@primerelay.net
mailto:baafie@planet.nl

Linux From Scratch - Version 7.10

254

• Sven Cranshoff <sven.cranshoff@lineo.be> – lfs.lineo.be mirror

• Scarlet Belgium – lfs.scarlet.be mirror

• Sebastian Faulborn <info@aliensoft.org> – lfs.aliensoft.org mirror

• Stuart Fox <stuart@dontuse.ms> – lfs.dontuse.ms mirror

• Ralf Uhlemann <admin@realhost.de> – lfs.oss-mirror.org mirror

• Antonin Sprinzl <Antonin.Sprinzl@tuwien.ac.at> – at.linuxfromscratch.org mirror

• Fredrik Danerklint <fredan-lfs@fredan.org> – se.linuxfromscratch.org mirror

• Franck <franck@linuxpourtous.com> – lfs.linuxpourtous.com mirror

• Philippe Baque <baque@cict.fr> – lfs.cict.fr mirror

• Vitaly Chekasin <gyouja@pilgrims.ru> – lfs.pilgrims.ru mirror

• Benjamin Heil <kontakt@wankoo.org> – lfs.wankoo.org mirror

Asian Mirrors

• Satit Phermsawang <satit@wbac.ac.th> – lfs.phayoune.org mirror

• Shizunet Co.,Ltd. <info@shizu-net.jp> – lfs.mirror.shizu-net.jp mirror

• Init World <http://www.initworld.com/> – lfs.initworld.com mirror

Australian Mirrors

• Jason Andrade <jason@dstc.edu.au> – au.linuxfromscratch.org mirror

Former Project Team Members
• Christine Barczak <theladyskye@linuxfromscratch.org> – LFS Book Editor

• Archaic <archaic@linuxfromscratch.org> – LFS Technical Writer/Editor, HLFS Project Leader, BLFS Editor,
Hints and Patches Project Maintainer

• Nathan Coulson <nathan@linuxfromscratch.org> – LFS-Bootscripts Maintainer

• Timothy Bauscher

• Robert Briggs

• Ian Chilton

• Jeroen Coumans <jeroen@linuxfromscratch.org> – Website Developer, FAQ Maintainer

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – LFS/BLFS/HLFS XML and XSL Maintainer

• Alex Groenewoud – LFS Technical Writer

• Marc Heerdink

• Jeremy Huntwork <jhuntwork@linuxfromscratch.org> – LFS Technical Writer, LFS LiveCD Maintainer

• Mark Hymers

• Seth W. Klein – FAQ maintainer

• Nicholas Leippe <nicholas@linuxfromscratch.org> – Wiki Maintainer

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Website Backend-Scripts Maintainer

mailto:sven.cranshoff@lineo.be
mailto:info@aliensoft.org
mailto:stuart@dontuse.ms
mailto:admin@realhost.de
mailto:Antonin.Sprinzl@tuwien.ac.at
mailto:fredan-lfs@fredan.org
mailto:franck@linuxpourtous.com
mailto:baque@cict.fr
mailto:gyouja@pilgrims.ru
mailto:kontakt@wankoo.org
mailto:satit@wbac.ac.th
mailto:info@shizu-net.jp
http://www.initworld.com/
mailto:jason@dstc.edu.au
mailto:theladyskye@linuxfromscratch.org
mailto:nathan@linuxfromscratch.org
mailto:jeroen@linuxfromscratch.org
mailto:manuel@linuxfromscratch.org
mailto:jhuntwork@linuxfromscratch.org
mailto:nicholas@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org

Linux From Scratch - Version 7.10

255

• Dan Nicholson <dnicholson@linuxfromscratch.org> – LFS and BLFS Editor

• Alexander E. Patrakov <alexander@linuxfromscratch.org> – LFS Technical Writer, LFS Internationalization
Editor, LFS Live CD Maintainer

• Simon Perreault

• Scot Mc Pherson <scot@linuxfromscratch.org> – LFS NNTP Gateway Maintainer

• Greg Schafer <gschafer@zip.com.au> – LFS Technical Writer and Architect of the Next Generation 64-bit-
enabling Build Method

• Jesse Tie-Ten-Quee – LFS Technical Writer

• James Robertson <jwrober@linuxfromscratch.org> – Bugzilla Maintainer

• Tushar Teredesai <tushar@linuxfromscratch.org> – BLFS Book Editor, Hints and Patches Project Leader

• Jeremy Utley <jeremy@linuxfromscratch.org> – LFS Technical Writer, Bugzilla Maintainer, LFS-Bootscripts
Maintainer

• Zack Winkles <zwinkles@gmail.com> – LFS Technical Writer

mailto:dnicholson@linuxfromscratch.org
mailto:alexander@linuxfromscratch.org
mailto:scot@linuxfromscratch.org
mailto:gschafer@zip.com.au
mailto:jwrober@linuxfromscratch.org
mailto:tushar@linuxfromscratch.org
mailto:jeremy@linuxfromscratch.org
mailto:zwinkles@gmail.com

Linux From Scratch - Version 7.10

256

Appendix C. Dependencies
Every package built in LFS relies on one or more other packages in order to build and install properly. Some packages
even participate in circular dependencies, that is, the first package depends on the second which in turn depends on the
first. Because of these dependencies, the order in which packages are built in LFS is very important. The purpose of
this page is to document the dependencies of each package built in LFS.

For each package we build, we have listed three, and sometimes four, types of dependencies. The first lists what other
packages need to be available in order to compile and install the package in question. The second lists what packages,
in addition to those on the first list, need to be available in order to run the test suites. The third list of dependencies
are packages that require this package to be built and installed in its final location before they are built and installed. In
most cases, this is because these packages will hard code paths to binaries within their scripts. If not built in a certain
order, this could result in paths of /tools/bin/[binary] being placed inside scripts installed to the final system. This is
obviously not desirable.

The last list of dependencies are optional packages that are not addressed in LFS, but could be useful to the user.
These packages may have additional mandatory or optional dependencies of their own. For these dependencies, the
recommended practice is to install them after completion of the LFS book and then go back and rebuild the LFS package.
In several cases, re-installation is addressed in BLFS.

acl
Installation depends on: Attr, Bash, Binutils, Coreutils, GCC, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo

Test suite depends on: Automake, Diffutils, Findutils, and Libtool

Must be installed before: Coreutils, Sed, Tar, Vim

Optional dependencies: None

attr
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo

Test suite depends on: Automake, Diffutils, Findutils, and Libtool

Must be installed before: Acl, Libcap

Optional dependencies: None

Autoconf
Installation depends on: Bash, Coreutils, Grep, M4, Make, Perl, Sed, and Texinfo

Test suite depends on: Automake, Diffutils, Findutils, GCC, and Libtool

Must be installed before: Automake

Optional dependencies: Emacs

Automake
Installation depends on: Autoconf, Bash, Coreutils, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo

Test suite depends on: Binutils, Bison, Bzip2, DejaGNU, Diffutils, Expect, Findutils, Flex, GCC, Gettext, Gzip,
Libtool, and Tar.

Must be installed before: None

Optional dependencies: None

Linux From Scratch - Version 7.10

257

Bash
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses,

Patch, Readline, Sed, and Texinfo
Test suite depends on: Shadow
Must be installed before: None
Optional dependencies: Xorg

Bc
Installation depends on: Bash, Binutils, Bison, Coreutils, GCC, Glibc, Grep, Make, and Readline
Test suite depends on: Gawk
Must be installed before: Linux Kernel
Optional dependencies: None

Binutils
Installation depends on: Bash, Binutils, Coreutils, Diffutils, File, Gawk, GCC, Glibc, Grep, Make, Perl, Sed,

Texinfo and Zlib
Test suite depends on: DejaGNU and Expect
Must be installed before: None
Optional dependencies: None

Bison
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Perl, and Sed
Test suite depends on: Diffutils, Findutils, and Flex
Must be installed before: Kbd and Tar
Optional dependencies: Doxygen (test suite)

Bzip2
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make, and Patch
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Check
Installation depends on: GCC, Grep, Make, Sed, and Texinfo
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Coreutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep, Make, Patch, Perl, Sed, and

Texinfo
Test suite depends on: Diffutils, E2fsprogs, Findutils, Shadow, and Util-linux
Must be installed before: Bash, Diffutils, Findutils, Man-DB, and Eudev
Optional dependencies: Perl Expect and IO:Tty modules (for test suite)

Linux From Scratch - Version 7.10

258

DejaGNU
Installation depends on: Bash, Coreutils, Diffutils, GCC, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Diffutils
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils, Perl
Must be installed before: None
Optional dependencies: None

Eudev
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Gperf, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Expat
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: XML::Parser
Optional dependencies: None

Expect
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Patch, Sed, and Tcl
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

E2fsprogs
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Gzip, Make, Sed, Texinfo,

and Util-linux
Test suite depends on: Procps-ng,Psmisc
Must be installed before: None
Optional dependencies: None

File
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Zlib
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 7.10

259

Findutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: DejaGNU, Diffutils, and Expect
Must be installed before: None
Optional dependencies: None

Flex
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Patch, Sed, and Texinfo
Test suite depends on: Bison and Gawk
Must be installed before: IPRoute2, Kbd, and Man-DB
Optional dependencies: None

Gawk
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep, Make, MPFR, Patch,

Readline, Sed and Texinfo
Test suite depends on: Diffutils
Must be installed before: None
Optional dependencies: None

Gcc
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, GMP, Grep,

M4, Make, MPC, MPFR, Patch, Perl, Sed, Tar, and Texinfo
Test suite depends on: DejaGNU and Expect
Must be installed before: None
Optional dependencies: CLooG-PPL, GNAT and PPL

GDBM
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gettext
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils, Perl, and Tcl
Must be installed before: Automake
Optional dependencies: None

Glibc
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep, Gzip, Linux API

Headers, Make, Perl, Sed, and Texinfo
Test suite depends on: File
Must be installed before: None
Optional dependencies: None

http://gcc.gnu.org/wiki/Graphite
http://gcc.gnu.org/wiki/GNAT
http://gcc.gnu.org/wiki/Graphite

Linux From Scratch - Version 7.10

260

GMP
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, M4, Make, Sed and

Texinfo
Test suite depends on: None
Must be installed before: MPFR, GCC
Optional dependencies: None

Gperf
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make
Test suite depends on: Diffutils, Expect
Must be installed before: None
Optional dependencies: None

Grep
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Patch, Sed, and

Texinfo
Test suite depends on: Gawk
Must be installed before: Man-DB
Optional dependencies: Pcre

Groff
Installation depends on: Bash, Binutils, Bison, Coreutils, Gawk, GCC, Glibc, Grep, Make, Patch, Sed, and

Texinfo
Test suite depends on: No test suite available
Must be installed before: Man-DB and Perl
Optional dependencies: GPL Ghostscript

GRUB
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses,

Sed, Texinfo, and Xz
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gzip
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils, Less
Must be installed before: Man-DB
Optional dependencies: None

Iana-Etc
Installation depends on: Coreutils, Gawk, and Make
Test suite depends on: No test suite available
Must be installed before: Perl
Optional dependencies: None

Linux From Scratch - Version 7.10

261

Inetutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, Texinfo, and

Zlib
Test suite depends on: No test suite available
Must be installed before: Tar
Optional dependencies: None

Intltool
Installation depends on: Bash, Gawk, Glibc, Make, Perl, Sed, and XML::Parser
Test suite depends on: Perl
Must be installed before: None
Optional dependencies: None

IProute2
Installation depends on: Bash, Bison, Coreutils, Flex, GCC, Glibc, Make, and Linux API Headers
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Kbd
Installation depends on: Bash, Binutils, Bison, Check, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, Patch,

and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Kmod
Installation depends on: Bash, Binutils, Bison, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, Sed, Xz-Utils,

Zlib
Test suite depends on: No test suite available
Must be installed before: Eudev
Optional dependencies: None

Less
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed
Test suite depends on: No test suite available
Must be installed before: Gzip
Optional dependencies: Pcre

Libcap
Installation depends on: Attr, Bash, Binutils, Coreutils, GCC, Glibc, Perl, Make, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: Linux-PAM

Linux From Scratch - Version 7.10

262

Libpipeline
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Check
Must be installed before: Man-DB
Optional dependencies: None

Libtool
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Autoconf, Automake, Findutils
Must be installed before: None
Optional dependencies: None

Linux Kernel
Installation depends on: Bash, Bc, Binutils, Coreutils, Diffutils, Findutils, GCC, Glibc, Grep, Gzip, Kmod, Make,

Ncurses, Perl, and Sed
Test suite depends on: No test suite available
Must be installed before: OpenSSL
Optional dependencies: None

M4
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils
Must be installed before: Autoconf and Bison
Optional dependencies: libsigsegv

Make
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Perl and Procps-ng
Must be installed before: None
Optional dependencies: None

Man-DB
Installation depends on: Bash, Binutils, Bzip2, Coreutils, Flex, GCC, GDBM, Gettext, Glibc, Grep, Groff, Gzip,

Less, Libpipeline, Make, Sed, and Xz
Test suite depends on: Util-linux
Must be installed before: None
Optional dependencies: None

Man-Pages
Installation depends on: Bash, Coreutils, and Make
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 7.10

263

MPC
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, MPFR, Sed

and Texinfo
Test suite depends on: None
Must be installed before: GCC
Optional dependencies: None

MPFR
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, Sed and

Texinfo
Test suite depends on: None
Must be installed before: Gawk, GCC
Optional dependencies: None

Ncurses
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Patch, and Sed
Test suite depends on: No test suite available
Must be installed before: Bash, GRUB, Inetutils, Less, Procps-ng, Psmisc, Readline, Texinfo, Util-linux, and Vim
Optional dependencies: None

Patch
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: Diffutils
Must be installed before: None
Optional dependencies: Ed

Perl
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, GDBM, Glibc, Grep, Groff, Make, Sed, and Zlib
Test suite depends on: Iana-Etc and Procps-ng
Must be installed before: Autoconf
Optional dependencies: None

Pkg-config
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Popt, and Sed
Test suite depends on: None
Must be installed before: Kmod
Optional dependencies: None

Popt
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make
Test suite depends on: Diffutils and Sed
Must be installed before: Pkg-config
Optional dependencies: None

Linux From Scratch - Version 7.10

264

Procps-ng
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Ncurses
Test suite depends on: DejaGNU
Must be installed before: None
Optional dependencies: None

Psmisc
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Readline
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, and

Texinfo
Test suite depends on: No test suite available
Must be installed before: Bash, Gawk
Optional dependencies: None

Sed
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils and Gawk
Must be installed before: E2fsprogs, File, Libtool, and Shadow
Optional dependencies: Cracklib

Shadow
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, Grep, Make,

and Sed
Test suite depends on: No test suite available
Must be installed before: Coreutils
Optional dependencies: Acl, Attr, Cracklib, PAM

Sysklogd
Installation depends on: Binutils, Coreutils, GCC, Glibc, Make, and Patch
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Sysvinit
Installation depends on: Binutils, Coreutils, GCC, Glibc, Make, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 7.10

265

Tar
Installation depends on: Acl, Attr, Bash, Binutils, Bison, Coreutils, GCC, Gettext, Glibc, Grep, Inetutils, Make,

Sed, and Texinfo
Test suite depends on: Autoconf, Diffutils, Findutils, Gawk, and Gzip
Must be installed before: None
Optional dependencies: None

Tcl
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Texinfo
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, Patch, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Util-linux
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, Grep, Make,

Ncurses, Sed, Eudev, and Zlib
Test suite depends on: None
Must be installed before: None
Optional dependencies: libcap-ng

Vim
Installation depends on: Acl, Attr, Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: Xorg, GTK+2, LessTif, Python, Tcl, Ruby, and GPM

XML::Parser
Installation depends on: Bash, Binutils, Coreutils, Expat, GCC, Glibc, Make, and Perl
Test suite depends on: Perl
Must be installed before: Intltool
Optional dependencies: None

Xz
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, and Make.
Test suite depends on: None
Must be installed before: GRUB, Kmod, Man-DB, Eudev
Optional dependencies: None

https://people.redhat.com/sgrubb/libcap-ng/

Linux From Scratch - Version 7.10

266

Zlib
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Sed

Test suite depends on: None

Must be installed before: File, Kmod, Perl, and Util-linux

Optional dependencies: None

Linux From Scratch - Version 7.10

267

Appendix D. Boot and sysconfig scripts
version-20150222

The scripts in this appendix are listed by the directory where they normally reside. The order is /etc/rc.d/
init.d, /etc/sysconfig, /etc/sysconfig/network-devices, and /etc/sysconfig/network-
devices/services. Within each section, the files are listed in the order they are normally called.

D.1. /etc/rc.d/init.d/rc
The rc script is the first script called by init and initiates the boot process.

#!/bin/bash
##
Begin rc
#
Description : Main Run Level Control Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
: DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

. /lib/lsb/init-functions

print_error_msg()
{
 log_failure_msg
 # $i is set when called
 MSG="FAILURE:\n\nYou should not be reading this error message.\n\n"
 MSG="${MSG}It means that an unforeseen error took place in\n"
 MSG="${MSG}${i},\n"
 MSG="${MSG}which exited with a return value of ${error_value}.\n"

 MSG="${MSG}If you're able to track this error down to a bug in one of\n"
 MSG="${MSG}the files provided by the ${DISTRO_MINI} book,\n"
 MSG="${MSG}please be so kind to inform us at ${DISTRO_CONTACT}.\n"
 log_failure_msg "${MSG}"

 log_info_msg "Press Enter to continue..."
 wait_for_user
}

check_script_status()
{
 # $i is set when called
 if [! -f ${i}]; then
 log_warning_msg "${i} is not a valid symlink."
 continue
 fi

Linux From Scratch - Version 7.10

268

 if [! -x ${i}]; then
 log_warning_msg "${i} is not executable, skipping."
 continue
 fi
}

run()
{
 if [-z $interactive]; then
 ${1} ${2}
 return $?
 fi

 while true; do
 read -p "Run ${1} ${2} (Yes/no/continue)? " -n 1 runit
 echo

 case ${runit} in
 c | C)
 interactive=""
 ${i} ${2}
 ret=${?}
 break;
 ;;

 n | N)
 return 0
 ;;

 y | Y)
 ${i} ${2}
 ret=${?}
 break
 ;;
 esac
 done

 return $ret
}

Read any local settings/overrides
[-r /etc/sysconfig/rc.site] && source /etc/sysconfig/rc.site

DISTRO=${DISTRO:-"Linux From Scratch"}
DISTRO_CONTACT=${DISTRO_CONTACT:-"lfs-dev@linuxfromscratch.org (Registration required)"}
DISTRO_MINI=${DISTRO_MINI:-"LFS"}
IPROMPT=${IPROMPT:-"no"}

These 3 signals will not cause our script to exit
trap "" INT QUIT TSTP

["${1}" != ""] && runlevel=${1}

if ["${runlevel}" == ""]; then
 echo "Usage: ${0} <runlevel>" >&2
 exit 1
fi

Linux From Scratch - Version 7.10

269

previous=${PREVLEVEL}
["${previous}" == ""] && previous=N

if [! -d /etc/rc.d/rc${runlevel}.d]; then
 log_info_msg "/etc/rc.d/rc${runlevel}.d does not exist.\n"
 exit 1
fi

if ["$runlevel" == "6" -o "$runlevel" == "0"]; then IPROMPT="no"; fi

Note: In ${LOGLEVEL:-7}, it is ':' 'dash' '7', not minus 7
if ["$runlevel" == "S"]; then
 [-r /etc/sysconfig/console] && source /etc/sysconfig/console
 dmesg -n "${LOGLEVEL:-7}"
fi

if ["${IPROMPT}" == "yes" -a "${runlevel}" == "S"]; then
 # The total length of the distro welcome string, without escape codes
 wlen=${wlen:-$(echo "Welcome to ${DISTRO}" | wc -c)}
 welcome_message=${welcome_message:-"Welcome to ${INFO}${DISTRO}${NORMAL}"}

 # The total length of the interactive string, without escape codes
 ilen=${ilen:-$(echo "Press 'I' to enter interactive startup" | wc -c)}
 i_message=${i_message:-"Press '${FAILURE}I${NORMAL}' to enter interactive startup"}

 # dcol and icol are spaces before the message to center the message
 # on screen. itime is the amount of wait time for the user to press a key
 wcol=$(((${COLUMNS} - ${wlen}) / 2))
 icol=$(((${COLUMNS} - ${ilen}) / 2))
 itime=${itime:-"3"}

 echo -e "\n\n"
 echo -e "\\033[${wcol}G${welcome_message}"
 echo -e "\\033[${icol}G${i_message}${NORMAL}"
 echo ""
 read -t "${itime}" -n 1 interactive 2>&1 > /dev/null
fi

Make lower case
["${interactive}" == "I"] && interactive="i"
["${interactive}" != "i"] && interactive=""

Read the state file if it exists from runlevel S
[-r /var/run/interactive] && source /var/run/interactive

Attempt to stop all services started by the previous runlevel,
and killed in this runlevel
if ["${previous}" != "N"]; then
 for i in $(ls -v /etc/rc.d/rc${runlevel}.d/K* 2> /dev/null)
 do
 check_script_status

 suffix=${i#/etc/rc.d/rc$runlevel.d/K[0-9][0-9]}
 prev_start=/etc/rc.d/rc$previous.d/S[0-9][0-9]$suffix
 sysinit_start=/etc/rc.d/rcS.d/S[0-9][0-9]$suffix

Linux From Scratch - Version 7.10

270

 if ["${runlevel}" != "0" -a "${runlevel}" != "6"]; then
 if [! -f ${prev_start} -a ! -f ${sysinit_start}]; then
 MSG="WARNING:\n\n${i} can't be "
 MSG="${MSG}executed because it was not "
 MSG="${MSG}not started in the previous "
 MSG="${MSG}runlevel (${previous})."
 log_warning_msg "$MSG"
 continue
 fi
 fi

 run ${i} stop
 error_value=${?}

 if ["${error_value}" != "0"]; then print_error_msg; fi
 done
fi

if ["${previous}" == "N"]; then export IN_BOOT=1; fi

if ["$runlevel" == "6" -a -n "${FASTBOOT}"]; then
 touch /fastboot
fi

Start all functions in this runlevel
for i in $(ls -v /etc/rc.d/rc${runlevel}.d/S* 2> /dev/null)
do
 if ["${previous}" != "N"]; then
 suffix=${i#/etc/rc.d/rc$runlevel.d/S[0-9][0-9]}
 stop=/etc/rc.d/rc$runlevel.d/K[0-9][0-9]$suffix
 prev_start=/etc/rc.d/rc$previous.d/S[0-9][0-9]$suffix

 [-f ${prev_start} -a ! -f ${stop}] && continue
 fi

 check_script_status

 case ${runlevel} in
 0|6)
 run ${i} stop
 ;;
 *)
 run ${i} start
 ;;
 esac

 error_value=${?}

 if ["${error_value}" != "0"]; then print_error_msg; fi
done

Store interactive variable on switch from runlevel S and remove if not
if ["${runlevel}" == "S" -a "${interactive}" == "i"]; then
 echo "interactive=\"i\"" > /var/run/interactive
else

Linux From Scratch - Version 7.10

271

 rm -f /var/run/interactive 2> /dev/null
fi

Copy the boot log on initial boot only
if ["${previous}" == "N" -a "${runlevel}" != "S"]; then
 cat $BOOTLOG >> /var/log/boot.log

 # Mark the end of boot
 echo "--------" >> /var/log/boot.log

 # Remove the temporary file
 rm -f $BOOTLOG 2> /dev/null
fi

End rc

D.2. /lib/lsb/init-functions
#!/bin/sh
##

Begin /lib/lsb/init-funtions
#
Description : Run Level Control Functions
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
: DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
Notes : With code based on Matthias Benkmann's simpleinit-msb
http://winterdrache.de/linux/newboot/index.html
#
The file should be located in /lib/lsb
#
##

Environmental setup
Setup default values for environment
umask 022
export PATH="/bin:/usr/bin:/sbin:/usr/sbin"

Set color commands, used via echo
Please consult `man console_codes for more information
under the "ECMA-48 Set Graphics Rendition" section
#
Warning: when switching from a 8bit to a 9bit font,
the linux console will reinterpret the bold (1;) to
the top 256 glyphs of the 9bit font. This does
not affect framebuffer consoles

NORMAL="\\033[0;39m" # Standard console grey
SUCCESS="\\033[1;32m" # Success is green
WARNING="\\033[1;33m" # Warnings are yellow
FAILURE="\\033[1;31m" # Failures are red

Linux From Scratch - Version 7.10

272

INFO="\\033[1;36m" # Information is light cyan
BRACKET="\\033[1;34m" # Brackets are blue

Use a colored prefix
BMPREFIX=" "
SUCCESS_PREFIX="${SUCCESS} * ${NORMAL}"
FAILURE_PREFIX="${FAILURE}*****${NORMAL}"
WARNING_PREFIX="${WARNING} *** ${NORMAL}"
SKIP_PREFIX="${INFO} S ${NORMAL}"

SUCCESS_SUFFIX="${BRACKET}[${SUCCESS} OK ${BRACKET}]${NORMAL}"
FAILURE_SUFFIX="${BRACKET}[${FAILURE} FAIL ${BRACKET}]${NORMAL}"
WARNING_SUFFIX="${BRACKET}[${WARNING} WARN ${BRACKET}]${NORMAL}"
SKIP_SUFFIX="${BRACKET}[${INFO} SKIP ${BRACKET}]${NORMAL}"

BOOTLOG=/run/bootlog
KILLDELAY=3

Set any user specified environment variables e.g. HEADLESS
[-r /etc/sysconfig/rc.site] && . /etc/sysconfig/rc.site

Screen Dimensions
Find current screen size
if [-z "${COLUMNS}"]; then
 COLUMNS=$(stty size)
 COLUMNS=${COLUMNS##* }
fi

When using remote connections, such as a serial port, stty size returns 0
if ["${COLUMNS}" = "0"]; then
 COLUMNS=80
fi

Measurements for positioning result messages
COL=$((${COLUMNS} - 8))
WCOL=$((${COL} - 2))

Set Cursor Position Commands, used via echo
SET_COL="\\033[${COL}G" # at the $COL char
SET_WCOL="\\033[${WCOL}G" # at the $WCOL char
CURS_UP="\\033[1A\\033[0G" # Up one line, at the 0'th char
CURS_ZERO="\\033[0G"

##
start_daemon()
Usage: start_daemon [-f] [-n nicelevel] [-p pidfile] pathname [args...]
#
Purpose: This runs the specified program as a daemon
#
Inputs: -f: (force) run the program even if it is already running.
-n nicelevel: specify a nice level. See 'man nice(1)'.
-p pidfile: use the specified file to determine PIDs.
pathname: the complete path to the specified program
args: additional arguments passed to the program (pathname)
#
Return values (as defined by LSB exit codes):
0 - program is running or service is OK

Linux From Scratch - Version 7.10

273

1 - generic or unspecified error
2 - invalid or excessive argument(s)
5 - program is not installed
##
start_daemon()
{
 local force=""
 local nice="0"
 local pidfile=""
 local pidlist=""
 local retval=""

 # Process arguments
 while true
 do
 case "${1}" in

 -f)
 force="1"
 shift 1
 ;;

 -n)
 nice="${2}"
 shift 2
 ;;

 -p)
 pidfile="${2}"
 shift 2
 ;;

 -*)
 return 2
 ;;

 *)
 program="${1}"
 break
 ;;
 esac
 done

 # Check for a valid program
 if [! -e "${program}"]; then return 5; fi

 # Execute
 if [-z "${force}"]; then
 if [-z "${pidfile}"]; then
 # Determine the pid by discovery
 pidlist=`pidofproc "${1}"`
 retval="${?}"
 else
 # The PID file contains the needed PIDs
 # Note that by LSB requirement, the path must be given to pidofproc,
 # however, it is not used by the current implementation or standard.
 pidlist=`pidofproc -p "${pidfile}" "${1}"`

Linux From Scratch - Version 7.10

274

 retval="${?}"
 fi

 # Return a value ONLY
 # It is the init script's (or distribution's functions) responsibilty
 # to log messages!
 case "${retval}" in

 0)
 # Program is already running correctly, this is a
 # successful start.
 return 0
 ;;

 1)
 # Program is not running, but an invalid pid file exists
 # remove the pid file and continue
 rm -f "${pidfile}"
 ;;

 3)
 # Program is not running and no pidfile exists
 # do nothing here, let start_deamon continue.
 ;;

 *)
 # Others as returned by status values shall not be interpreted
 # and returned as an unspecified error.
 return 1
 ;;
 esac
 fi

 # Do the start!
 nice -n "${nice}" "${@}"
}

##
killproc()
Usage: killproc [-p pidfile] pathname [signal]
#
Purpose: Send control signals to running processes
#
Inputs: -p pidfile, uses the specified pidfile
pathname, pathname to the specified program
signal, send this signal to pathname
#
Return values (as defined by LSB exit codes):
0 - program (pathname) has stopped/is already stopped or a
running program has been sent specified signal and stopped
successfully
1 - generic or unspecified error
2 - invalid or excessive argument(s)
5 - program is not installed
7 - program is not running and a signal was supplied
##
killproc()

Linux From Scratch - Version 7.10

275

{
 local pidfile
 local program
 local prefix
 local progname
 local signal="-TERM"
 local fallback="-KILL"
 local nosig
 local pidlist
 local retval
 local pid
 local delay="30"
 local piddead
 local dtime

 # Process arguments
 while true; do
 case "${1}" in
 -p)
 pidfile="${2}"
 shift 2
 ;;

 *)
 program="${1}"
 if [-n "${2}"]; then
 signal="${2}"
 fallback=""
 else
 nosig=1
 fi

 # Error on additional arguments
 if [-n "${3}"]; then
 return 2
 else
 break
 fi
 ;;
 esac
 done

 # Check for a valid program
 if [! -e "${program}"]; then return 5; fi

 # Check for a valid signal
 check_signal "${signal}"
 if ["${?}" -ne "0"]; then return 2; fi

 # Get a list of pids
 if [-z "${pidfile}"]; then
 # determine the pid by discovery
 pidlist=`pidofproc "${1}"`
 retval="${?}"
 else
 # The PID file contains the needed PIDs
 # Note that by LSB requirement, the path must be given to pidofproc,

Linux From Scratch - Version 7.10

276

 # however, it is not used by the current implementation or standard.
 pidlist=`pidofproc -p "${pidfile}" "${1}"`
 retval="${?}"
 fi

 # Return a value ONLY
 # It is the init script's (or distribution's functions) responsibilty
 # to log messages!
 case "${retval}" in

 0)
 # Program is running correctly
 # Do nothing here, let killproc continue.
 ;;

 1)
 # Program is not running, but an invalid pid file exists
 # Remove the pid file.
 rm -f "${pidfile}"

 # This is only a success if no signal was passed.
 if [-n "${nosig}"]; then
 return 0
 else
 return 7
 fi
 ;;

 3)
 # Program is not running and no pidfile exists
 # This is only a success if no signal was passed.
 if [-n "${nosig}"]; then
 return 0
 else
 return 7
 fi
 ;;

 *)
 # Others as returned by status values shall not be interpreted
 # and returned as an unspecified error.
 return 1
 ;;
 esac

 # Perform different actions for exit signals and control signals
 check_sig_type "${signal}"

 if ["${?}" -eq "0"]; then # Signal is used to terminate the program

 # Account for empty pidlist (pid file still exists and no
 # signal was given)
 if ["${pidlist}" != ""]; then

 # Kill the list of pids
 for pid in ${pidlist}; do

Linux From Scratch - Version 7.10

277

 kill -0 "${pid}" 2> /dev/null

 if ["${?}" -ne "0"]; then
 # Process is dead, continue to next and assume all is well
 continue
 else
 kill "${signal}" "${pid}" 2> /dev/null

 # Wait up to ${delay}/10 seconds to for "${pid}" to
 # terminate in 10ths of a second

 while ["${delay}" -ne "0"]; do
 kill -0 "${pid}" 2> /dev/null || piddead="1"
 if ["${piddead}" = "1"]; then break; fi
 sleep 0.1
 delay="$((${delay} - 1))"
 done

 # If a fallback is set, and program is still running, then
 # use the fallback
 if [-n "${fallback}" -a "${piddead}" != "1"]; then
 kill "${fallback}" "${pid}" 2> /dev/null
 sleep 1
 # Check again, and fail if still running
 kill -0 "${pid}" 2> /dev/null && return 1
 fi
 fi
 done
 fi

 # Check for and remove stale PID files.
 if [-z "${pidfile}"]; then
 # Find the basename of $program
 prefix=`echo "${program}" | sed 's/[^/]*$//'`
 progname=`echo "${program}" | sed "s@${prefix}@@"`

 if [-e "/var/run/${progname}.pid"]; then
 rm -f "/var/run/${progname}.pid" 2> /dev/null
 fi
 else
 if [-e "${pidfile}"]; then rm -f "${pidfile}" 2> /dev/null; fi
 fi

 # For signals that do not expect a program to exit, simply
 # let kill do its job, and evaluate kill's return for value

 else # check_sig_type - signal is not used to terminate program
 for pid in ${pidlist}; do
 kill "${signal}" "${pid}"
 if ["${?}" -ne "0"]; then return 1; fi
 done
 fi
}

##
pidofproc()
Usage: pidofproc [-p pidfile] pathname

Linux From Scratch - Version 7.10

278

#
Purpose: This function returns one or more pid(s) for a particular daemon
#
Inputs: -p pidfile, use the specified pidfile instead of pidof
pathname, path to the specified program
#
Return values (as defined by LSB status codes):
0 - Success (PIDs to stdout)
1 - Program is dead, PID file still exists (remaining PIDs output)
3 - Program is not running (no output)
##
pidofproc()
{
 local pidfile
 local program
 local prefix
 local progname
 local pidlist
 local lpids
 local exitstatus="0"

 # Process arguments
 while true; do
 case "${1}" in

 -p)
 pidfile="${2}"
 shift 2
 ;;

 *)
 program="${1}"
 if [-n "${2}"]; then
 # Too many arguments
 # Since this is status, return unknown
 return 4
 else
 break
 fi
 ;;
 esac
 done

 # If a PID file is not specified, try and find one.
 if [-z "${pidfile}"]; then
 # Get the program's basename
 prefix=`echo "${program}" | sed 's/[^/]*$//'`

 if [-z "${prefix}"]; then
 progname="${program}"
 else
 progname=`echo "${program}" | sed "s@${prefix}@@"`
 fi

 # If a PID file exists with that name, assume that is it.
 if [-e "/var/run/${progname}.pid"]; then
 pidfile="/var/run/${progname}.pid"

Linux From Scratch - Version 7.10

279

 fi
 fi

 # If a PID file is set and exists, use it.
 if [-n "${pidfile}" -a -e "${pidfile}"]; then

 # Use the value in the first line of the pidfile
 pidlist=`/bin/head -n1 "${pidfile}"`
 # This can optionally be written as 'sed 1q' to repalce 'head -n1'
 # should LFS move /bin/head to /usr/bin/head
 else
 # Use pidof
 pidlist=`pidof "${program}"`
 fi

 # Figure out if all listed PIDs are running.
 for pid in ${pidlist}; do
 kill -0 ${pid} 2> /dev/null

 if ["${?}" -eq "0"]; then
 lpids="${lpids}${pid} "
 else
 exitstatus="1"
 fi
 done

 if [-z "${lpids}" -a ! -f "${pidfile}"]; then
 return 3
 else
 echo "${lpids}"
 return "${exitstatus}"
 fi
}

##
statusproc()
Usage: statusproc [-p pidfile] pathname
#
Purpose: This function prints the status of a particular daemon to stdout
#
Inputs: -p pidfile, use the specified pidfile instead of pidof
pathname, path to the specified program
#
Return values:
0 - Status printed
1 - Input error. The daemon to check was not specified.
##
statusproc()
{
 local pidfile
 local pidlist

 if ["${#}" = "0"]; then
 echo "Usage: statusproc [-p pidfle] {program}"
 exit 1
 fi

Linux From Scratch - Version 7.10

280

 # Process arguments
 while true; do
 case "${1}" in

 -p)
 pidfile="${2}"
 shift 2
 ;;

 *)
 if [-n "${2}"]; then
 echo "Too many arguments"
 return 1
 else
 break
 fi
 ;;
 esac
 done

 if [-n "${pidfile}"]; then
 pidlist=`pidofproc -p "${pidfile}" $@`
 else
 pidlist=`pidofproc $@`
 fi

 # Trim trailing blanks
 pidlist=`echo "${pidlist}" | sed -r 's/ +$//'`

 base="${1##*/}"

 if [-n "${pidlist}"]; then
 /bin/echo -e "${INFO}${base} is running with Process" \
 "ID(s) ${pidlist}.${NORMAL}"
 else
 if [-n "${base}" -a -e "/var/run/${base}.pid"]; then
 /bin/echo -e "${WARNING}${1} is not running but" \
 "/var/run/${base}.pid exists.${NORMAL}"
 else
 if [-n "${pidfile}" -a -e "${pidfile}"]; then
 /bin/echo -e "${WARNING}${1} is not running" \
 "but ${pidfile} exists.${NORMAL}"
 else
 /bin/echo -e "${INFO}${1} is not running.${NORMAL}"
 fi
 fi
 fi
}

##
timespec()
#
Purpose: An internal utility function to format a timestamp
a boot log file. Sets the STAMP variable.
#
Return value: Not used
##

Linux From Scratch - Version 7.10

281

timespec()
{
 STAMP="$(echo `date +"%b %d %T %:z"` `hostname`) "
 return 0
}

##
log_success_msg()
Usage: log_success_msg ["message"]
#
Purpose: Print a successful status message to the screen and
a boot log file.
#
Inputs: $@ - Message
#
Return values: Not used
##
log_success_msg()
{
 /bin/echo -n -e "${BMPREFIX}${@}"
 /bin/echo -e "${CURS_ZERO}${SUCCESS_PREFIX}${SET_COL}${SUCCESS_SUFFIX}"

 # Strip non-printable characters from log file
 logmessage=`echo "${@}" | sed 's/\\\033[^a-zA-Z]*.//g'`

 timespec
 /bin/echo -e "${STAMP} ${logmessage} OK" >> ${BOOTLOG}

 return 0
}

log_success_msg2()
{
 /bin/echo -n -e "${BMPREFIX}${@}"
 /bin/echo -e "${CURS_ZERO}${SUCCESS_PREFIX}${SET_COL}${SUCCESS_SUFFIX}"

 echo " OK" >> ${BOOTLOG}

 return 0
}

##
log_failure_msg()
Usage: log_failure_msg ["message"]
#
Purpose: Print a failure status message to the screen and
a boot log file.
#
Inputs: $@ - Message
#
Return values: Not used
##
log_failure_msg()
{
 /bin/echo -n -e "${BMPREFIX}${@}"
 /bin/echo -e "${CURS_ZERO}${FAILURE_PREFIX}${SET_COL}${FAILURE_SUFFIX}"

Linux From Scratch - Version 7.10

282

 # Strip non-printable characters from log file

 timespec
 logmessage=`echo "${@}" | sed 's/\\\033[^a-zA-Z]*.//g'`
 /bin/echo -e "${STAMP} ${logmessage} FAIL" >> ${BOOTLOG}

 return 0
}

log_failure_msg2()
{
 /bin/echo -n -e "${BMPREFIX}${@}"
 /bin/echo -e "${CURS_ZERO}${FAILURE_PREFIX}${SET_COL}${FAILURE_SUFFIX}"

 echo "FAIL" >> ${BOOTLOG}

 return 0
}

##
log_warning_msg()
Usage: log_warning_msg ["message"]
#
Purpose: Print a warning status message to the screen and
a boot log file.
#
Return values: Not used
##
log_warning_msg()
{
 /bin/echo -n -e "${BMPREFIX}${@}"
 /bin/echo -e "${CURS_ZERO}${WARNING_PREFIX}${SET_COL}${WARNING_SUFFIX}"

 # Strip non-printable characters from log file
 logmessage=`echo "${@}" | sed 's/\\\033[^a-zA-Z]*.//g'`
 timespec
 /bin/echo -e "${STAMP} ${logmessage} WARN" >> ${BOOTLOG}

 return 0
}

log_skip_msg()
{
 /bin/echo -n -e "${BMPREFIX}${@}"
 /bin/echo -e "${CURS_ZERO}${SKIP_PREFIX}${SET_COL}${SKIP_SUFFIX}"

 # Strip non-printable characters from log file
 logmessage=`echo "${@}" | sed 's/\\\033[^a-zA-Z]*.//g'`
 /bin/echo "SKIP" >> ${BOOTLOG}

 return 0
}

##
log_info_msg()
Usage: log_info_msg message
#

Linux From Scratch - Version 7.10

283

Purpose: Print an information message to the screen and
a boot log file. Does not print a trailing newline character.
#
Return values: Not used
##
log_info_msg()
{
 /bin/echo -n -e "${BMPREFIX}${@}"

 # Strip non-printable characters from log file
 logmessage=`echo "${@}" | sed 's/\\\033[^a-zA-Z]*.//g'`
 timespec
 /bin/echo -n -e "${STAMP} ${logmessage}" >> ${BOOTLOG}

 return 0
}

log_info_msg2()
{
 /bin/echo -n -e "${@}"

 # Strip non-printable characters from log file
 logmessage=`echo "${@}" | sed 's/\\\033[^a-zA-Z]*.//g'`
 /bin/echo -n -e "${logmessage}" >> ${BOOTLOG}

 return 0
}

##
evaluate_retval()
Usage: Evaluate a return value and print success or failyure as appropriate
#
Purpose: Convenience function to terminate an info message
#
Return values: Not used
##
evaluate_retval()
{
 local error_value="${?}"

 if [${error_value} = 0]; then
 log_success_msg2
 else
 log_failure_msg2
 fi
}

##
check_signal()
Usage: check_signal [-{signal} | {signal}]
#
Purpose: Check for a valid signal. This is not defined by any LSB draft,
however, it is required to check the signals to determine if the
signals chosen are invalid arguments to the other functions.
#
Inputs: Accepts a single string value in the form or -{signal} or {signal}
#

Linux From Scratch - Version 7.10

284

Return values:
0 - Success (signal is valid
1 - Signal is not valid
##
check_signal()
{
 local valsig

 # Add error handling for invalid signals
 valsig="-ALRM -HUP -INT -KILL -PIPE -POLL -PROF -TERM -USR1 -USR2"
 valsig="${valsig} -VTALRM -STKFLT -PWR -WINCH -CHLD -URG -TSTP -TTIN"
 valsig="${valsig} -TTOU -STOP -CONT -ABRT -FPE -ILL -QUIT -SEGV -TRAP"
 valsig="${valsig} -SYS -EMT -BUS -XCPU -XFSZ -0 -1 -2 -3 -4 -5 -6 -8 -9"
 valsig="${valsig} -11 -13 -14 -15"

 echo "${valsig}" | grep -- " ${1} " > /dev/null

 if ["${?}" -eq "0"]; then
 return 0
 else
 return 1
 fi
}

##
check_sig_type()
Usage: check_signal [-{signal} | {signal}]
#
Purpose: Check if signal is a program termination signal or a control signal
This is not defined by any LSB draft, however, it is required to
check the signals to determine if they are intended to end a
program or simply to control it.
#
Inputs: Accepts a single string value in the form or -{signal} or {signal}
#
Return values:
0 - Signal is used for program termination
1 - Signal is used for program control
##
check_sig_type()
{
 local valsig

 # The list of termination signals (limited to generally used items)
 valsig="-ALRM -INT -KILL -TERM -PWR -STOP -ABRT -QUIT -2 -3 -6 -9 -14 -15"

 echo "${valsig}" | grep -- " ${1} " > /dev/null

 if ["${?}" -eq "0"]; then
 return 0
 else
 return 1
 fi
}

##
wait_for_user()

Linux From Scratch - Version 7.10

285

#
Purpose: Wait for the user to respond if not a headless system
#
##
wait_for_user()
{
 # Wait for the user by default
 ["${HEADLESS=0}" = "0"] && read ENTER
 return 0
}

##
is_true()
#
Purpose: Utility to test if a variable is true | yes | 1
#
##
is_true()
{
 ["$1" = "1"] || ["$1" = "yes"] || ["$1" = "true"] || ["$1" = "y"] ||
 ["$1" = "t"]
}

End /lib/lsb/init-functions

D.3. /etc/rc.d/init.d/mountvirtfs
#!/bin/sh
##
Begin mountvirtfs
#
Description : Mount proc, sysfs, and run
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: mountvirtfs
Required-Start:
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Mounts /sys and /proc virtual (kernel) filesystems.
Mounts /run (tmpfs) and /dev (devtmpfs).
Description: Mounts /sys and /proc virtual (kernel) filesystems.
Mounts /run (tmpfs) and /dev (devtmpfs).
X-LFS-Provided-By: LFS
END INIT INFO

Linux From Scratch - Version 7.10

286

. /lib/lsb/init-functions

case "${1}" in
 start)
 # Make sure /run is available before logging any messages
 if ! mountpoint /run >/dev/null; then
 mount /run || failed=1
 fi

 mkdir -p /run/lock /run/shm
 chmod 1777 /run/shm /run/lock

 log_info_msg "Mounting virtual file systems: ${INFO}/run"

 if ! mountpoint /proc >/dev/null; then
 log_info_msg2 " ${INFO}/proc"
 mount -o nosuid,noexec,nodev /proc || failed=1
 fi

 if ! mountpoint /sys >/dev/null; then
 log_info_msg2 " ${INFO}/sys"
 mount -o nosuid,noexec,nodev /sys || failed=1
 fi

 if ! mountpoint /dev >/dev/null; then
 log_info_msg2 " ${INFO}/dev"
 mount -o mode=0755,nosuid /dev || failed=1
 fi

 ln -sfn /run/shm /dev/shm

 (exit ${failed})
 evaluate_retval
 exit $failed
 ;;

 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End mountvirtfs

D.4. /etc/rc.d/init.d/modules
#!/bin/sh
##
Begin modules
#
Description : Module auto-loading script
#
Authors : Zack Winkles
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#

Linux From Scratch - Version 7.10

287

Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: modules
Required-Start: mountvirtfs sysctl
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Loads required modules.
Description: Loads modules listed in /etc/sysconfig/modules.
X-LFS-Provided-By: LFS
END INIT INFO

Assure that the kernel has module support.
[-e /proc/modules] || exit 0

. /lib/lsb/init-functions

case "${1}" in
 start)
 # Exit if there's no modules file or there are no
 # valid entries
 [-r /etc/sysconfig/modules] || exit 0
 egrep -qv '^($|#)' /etc/sysconfig/modules || exit 0

 log_info_msg "Loading modules:"

 # Only try to load modules if the user has actually given us
 # some modules to load.

 while read module args; do

 # Ignore comments and blank lines.
 case "$module" in
 ""|"#"*) continue ;;
 esac

 # Attempt to load the module, passing any arguments provided.
 modprobe ${module} ${args} >/dev/null

 # Print the module name if successful, otherwise take note.
 if [$? -eq 0]; then
 log_info_msg2 " ${module}"
 else
 failedmod="${failedmod} ${module}"
 fi
 done < /etc/sysconfig/modules

 # Print a message about successfully loaded modules on the correct line.
 log_success_msg2

 # Print a failure message with a list of any modules that
 # may have failed to load.

Linux From Scratch - Version 7.10

288

 if [-n "${failedmod}"]; then
 log_failure_msg "Failed to load modules:${failedmod}"
 exit 1
 fi
 ;;

 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

exit 0

End modules

D.5. /etc/rc.d/init.d/udev
#!/bin/sh
##
Begin udev
#
Description : Udev cold-plugging script
#
Authors : Zack Winkles, Alexander E. Patrakov
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: udev $time
Required-Start:
Should-Start: modules
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Populates /dev with device nodes.
Description: Mounts a tempfs on /dev and starts the udevd daemon.
Device nodes are created as defined by udev.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 log_info_msg "Populating /dev with device nodes... "
 if ! grep -q '[[:space:]]sysfs' /proc/mounts; then
 log_failure_msg2
 msg="FAILURE:\n\nUnable to create "
 msg="${msg}devices without a SysFS filesystem\n\n"
 msg="${msg}After you press Enter, this system "

Linux From Scratch - Version 7.10

289

 msg="${msg}will be halted and powered off.\n\n"
 log_info_msg "$msg"
 log_info_msg "Press Enter to continue..."
 wait_for_user
 /etc/rc.d/init.d/halt stop
 fi

 # Start the udev daemon to continually watch for, and act on,
 # uevents
 /sbin/udevd --daemon

 # Now traverse /sys in order to "coldplug" devices that have
 # already been discovered
 /sbin/udevadm trigger --action=add --type=subsystems
 /sbin/udevadm trigger --action=add --type=devices
 /sbin/udevadm trigger --action=change --type=devices

 # Now wait for udevd to process the uevents we triggered
 if ! is_true "$OMIT_UDEV_SETTLE"; then
 /sbin/udevadm settle
 fi

 # If any LVM based partitions are on the system, ensure they
 # are activated so they can be used.
 if [-x /sbin/vgchange]; then /sbin/vgchange -a y >/dev/null; fi

 log_success_msg2
 ;;

 *)
 echo "Usage ${0} {start}"
 exit 1
 ;;
esac

exit 0

End udev

D.6. /etc/rc.d/init.d/swap
#!/bin/sh
##
Begin swap
#
Description : Swap Control Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO

Linux From Scratch - Version 7.10

290

Provides: swap
Required-Start: udev
Should-Start: modules
Required-Stop: localnet
Should-Stop:
Default-Start: S
Default-Stop: 0 6
Short-Description: Mounts and unmounts swap partitions.
Description: Mounts and unmounts swap partitions defined in
/etc/fstab.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 log_info_msg "Activating all swap files/partitions..."
 swapon -a
 evaluate_retval
 ;;

 stop)
 log_info_msg "Deactivating all swap files/partitions..."
 swapoff -a
 evaluate_retval
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 log_success_msg "Retrieving swap status."
 swapon -s
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart|status}"
 exit 1
 ;;
esac

exit 0

End swap

D.7. /etc/rc.d/init.d/setclock
#!/bin/sh
##
Begin setclock
#
Description : Setting Linux Clock

Linux From Scratch - Version 7.10

291

#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides:
Required-Start:
Should-Start: modules
Required-Stop:
Should-Stop: $syslog
Default-Start: S
Default-Stop:
Short-Description: Stores and restores time from the hardware clock
Description: On boot, system time is obtained from hwclock. The
hardware clock can also be set on shutdown.
X-LFS-Provided-By: LFS BLFS
END INIT INFO

. /lib/lsb/init-functions

[-r /etc/sysconfig/clock] && . /etc/sysconfig/clock

case "${UTC}" in
 yes|true|1)
 CLOCKPARAMS="${CLOCKPARAMS} --utc"
 ;;

 no|false|0)
 CLOCKPARAMS="${CLOCKPARAMS} --localtime"
 ;;

esac

case ${1} in
 start)
 hwclock --hctosys ${CLOCKPARAMS} >/dev/null
 ;;

 stop)
 log_info_msg "Setting hardware clock..."
 hwclock --systohc ${CLOCKPARAMS} >/dev/null
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} {start|stop}"
 exit 1
 ;;

esac

Linux From Scratch - Version 7.10

292

exit 0

D.8. /etc/rc.d/init.d/checkfs
#!/bin/sh
##
Begin checkfs
#
Description : File System Check
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
A. Luebke - luebke@users.sourceforge.net
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
Based on checkfs script from LFS-3.1 and earlier.
#
From man fsck
0 - No errors
1 - File system errors corrected
2 - System should be rebooted
4 - File system errors left uncorrected
8 - Operational error
16 - Usage or syntax error
32 - Fsck canceled by user request
128 - Shared library error
#
###

BEGIN INIT INFO
Provides: checkfs
Required-Start: udev swap $time
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Checks local filesystems before mounting.
Description: Checks local filesystmes before mounting.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 if [-f /fastboot]; then
 msg="/fastboot found, will omit "
 msg="${msg} file system checks as requested.\n"
 log_info_msg "${msg}"
 exit 0
 fi

 log_info_msg "Mounting root file system in read-only mode... "

Linux From Scratch - Version 7.10

293

 mount -n -o remount,ro / >/dev/null

 if [${?} != 0]; then
 log_failure_msg2
 msg="\n\nCannot check root "
 msg="${msg}filesystem because it could not be mounted "
 msg="${msg}in read-only mode.\n\n"
 msg="${msg}After you press Enter, this system will be "
 msg="${msg}halted and powered off.\n\n"
 log_failure_msg "${msg}"

 log_info_msg "Press Enter to continue..."
 wait_for_user
 /etc/rc.d/init.d/halt stop
 else
 log_success_msg2
 fi

 if [-f /forcefsck]; then
 msg="\n/forcefsck found, forcing file"
 msg="${msg} system checks as requested."
 log_success_msg "$msg"
 options="-f"
 else
 options=""
 fi

 log_info_msg "Checking file systems..."
 # Note: -a option used to be -p; but this fails e.g. on fsck.minix
 if is_true "$VERBOSE_FSCK"; then
 fsck ${options} -a -A -C -T
 else
 fsck ${options} -a -A -C -T >/dev/null
 fi

 error_value=${?}

 if ["${error_value}" = 0]; then
 log_success_msg2
 fi

 if ["${error_value}" = 1]; then
 msg="\nWARNING:\n\nFile system errors "
 msg="${msg}were found and have been corrected.\n"
 msg="${msg}You may want to double-check that "
 msg="${msg}everything was fixed properly."
 log_warning_msg "$msg"
 fi

 if ["${error_value}" = 2 -o "${error_value}" = 3]; then
 msg="\nWARNING:\n\nFile system errors "
 msg="${msg}were found and have been been "
 msg="${msg}corrected, but the nature of the "
 msg="${msg}errors require this system to be rebooted.\n\n"
 msg="${msg}After you press enter, "
 msg="${msg}this system will be rebooted\n\n"
 log_failure_msg "$msg"

Linux From Scratch - Version 7.10

294

 log_info_msg "Press Enter to continue..."
 wait_for_user
 reboot -f
 fi

 if ["${error_value}" -gt 3 -a "${error_value}" -lt 16]; then
 msg="\nFAILURE:\n\nFile system errors "
 msg="${msg}were encountered that could not be "
 msg="${msg}fixed automatically. This system "
 msg="${msg}cannot continue to boot and will "
 msg="${msg}therefore be halted until those "
 msg="${msg}errors are fixed manually by a "
 msg="${msg}System Administrator.\n\n"
 msg="${msg}After you press Enter, this system will be "
 msg="${msg}halted and powered off.\n\n"
 log_failure_msg "$msg"

 log_info_msg "Press Enter to continue..."
 wait_for_user
 /etc/rc.d/init.d/halt stop
 fi

 if ["${error_value}" -ge 16]; then
 msg="\nFAILURE:\n\nUnexpected Failure "
 msg="${msg}running fsck. Exited with error "
 msg="${msg} code: ${error_value}."
 log_failure_msg $msg
 exit ${error_value}
 fi

 exit 0
 ;;
 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End checkfs

D.9. /etc/rc.d/init.d/mountfs
#!/bin/sh
##
Begin mountfs
#
Description : File System Mount Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

Linux From Scratch - Version 7.10

295

BEGIN INIT INFO
Provides: $local_fs
Required-Start: udev checkfs
Should-Start:
Required-Stop: swap
Should-Stop:
Default-Start: S
Default-Stop: 0 6
Short-Description: Mounts/unmounts local filesystems defined in /etc/fstab.
Description: Remounts root filesystem read/write and mounts all
remaining local filesystems defined in /etc/fstab on
start. Remounts root filesystem read-only and unmounts
remaining filesystems on stop.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 log_info_msg "Remounting root file system in read-write mode..."
 mount -o remount,rw / >/dev/null
 evaluate_retval

 # Remove fsck-related file system watermarks.
 rm -f /fastboot /forcefsck

 # Make sure /dev/pts exists
 mkdir -p /dev/pts

 # This will mount all filesystems that do not have _netdev in
 # their option list. _netdev denotes a network filesystem.

 log_info_msg "Mounting remaining file systems..."
 mount -a -O no_netdev >/dev/null
 evaluate_retval
 exit $failed
 ;;

 stop)
 # Don't unmount virtual file systems like /run
 log_info_msg "Unmounting all other currently mounted file systems..."
 umount -a -d -r -t notmpfs,nosysfs,nodevtmpfs,noproc,nodevpts >/dev/null
 evaluate_retval

 # Make sure / is mounted read only (umount bug)
 mount -o remount,ro /

 # Make all LVM volume groups unavailable, if appropriate
 # This fails if swap or / are on an LVM partition
 #if [-x /sbin/vgchange]; then /sbin/vgchange -an > /dev/null; fi
 ;;

 *)
 echo "Usage: ${0} {start|stop}"
 exit 1

Linux From Scratch - Version 7.10

296

 ;;
esac

End mountfs

D.10. /etc/rc.d/init.d/udev_retry
#!/bin/sh
##
Begin udev_retry
#
Description : Udev cold-plugging script (retry)
#
Authors : Alexander E. Patrakov
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
Bryan Kadzban -
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: udev_retry
Required-Start: udev
Should-Start: $local_fs
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Replays failed uevents and creates additional devices.
Description: Replays any failed uevents that were skipped due to
slow hardware initialization, and creates those needed
device nodes
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 log_info_msg "Retrying failed uevents, if any..."

 # As of udev-186, the --run option is no longer valid
 #rundir=$(/sbin/udevadm info --run)
 rundir=/run/udev
 # From Debian: "copy the rules generated before / was mounted
 # read-write":

 for file in ${rundir}/tmp-rules--*; do
 dest=${file##*tmp-rules--}
 ["$dest" = '*'] && break
 cat $file >> /etc/udev/rules.d/$dest
 rm -f $file
 done

Linux From Scratch - Version 7.10

297

 # Re-trigger the uevents that may have failed,
 # in hope they will succeed now
 /bin/sed -e 's/#.*$//' /etc/sysconfig/udev_retry | /bin/grep -v '^$' | \
 while read line ; do
 for subsystem in $line ; do
 /sbin/udevadm trigger --subsystem-match=$subsystem --action=add
 done
 done

 # Now wait for udevd to process the uevents we triggered
 if ! is_true "$OMIT_UDEV_RETRY_SETTLE"; then
 /sbin/udevadm settle
 fi

 evaluate_retval
 ;;

 *)
 echo "Usage ${0} {start}"
 exit 1
 ;;
esac

exit 0

End udev_retry

D.11. /etc/rc.d/init.d/cleanfs
#!/bin/sh
##
Begin cleanfs
#
Description : Clean file system
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: cleanfs
Required-Start: $local_fs
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Cleans temporary directories early in the boot process.
Description: Cleans temporary directories /var/run, /var/lock, and
optionally, /tmp. cleanfs also creates /var/run/utmp
and any files defined in /etc/sysconfig/createfiles.
X-LFS-Provided-By: LFS

Linux From Scratch - Version 7.10

298

END INIT INFO

. /lib/lsb/init-functions

Function to create files/directory on boot.
create_files()
{
 # Input to file descriptor 9 and output to stdin (redirection)
 exec 9>&0 < /etc/sysconfig/createfiles

 while read name type perm usr grp dtype maj min junk
 do
 # Ignore comments and blank lines.
 case "${name}" in
 ""|\#*) continue ;;
 esac

 # Ignore existing files.
 if [! -e "${name}"]; then
 # Create stuff based on its type.
 case "${type}" in
 dir)
 mkdir "${name}"
 ;;
 file)
 :> "${name}"
 ;;
 dev)
 case "${dtype}" in
 char)
 mknod "${name}" c ${maj} ${min}
 ;;
 block)
 mknod "${name}" b ${maj} ${min}
 ;;
 pipe)
 mknod "${name}" p
 ;;
 *)
 log_warning_msg "\nUnknown device type: ${dtype}"
 ;;
 esac
 ;;
 *)
 log_warning_msg "\nUnknown type: ${type}"
 continue
 ;;
 esac

 # Set up the permissions, too.
 chown ${usr}:${grp} "${name}"
 chmod ${perm} "${name}"
 fi
 done

 # Close file descriptor 9 (end redirection)
 exec 0>&9 9>&-

Linux From Scratch - Version 7.10

299

 return 0
}

case "${1}" in
 start)
 log_info_msg "Cleaning file systems:"

 if ["${SKIPTMPCLEAN}" = ""]; then
 log_info_msg2 " /tmp"
 cd /tmp &&
 find . -xdev -mindepth 1 ! -name lost+found -delete || failed=1
 fi

 > /var/run/utmp

 if grep -q '^utmp:' /etc/group ; then
 chmod 664 /var/run/utmp
 chgrp utmp /var/run/utmp
 fi

 (exit ${failed})
 evaluate_retval

 if egrep -qv '^(#|$)' /etc/sysconfig/createfiles 2>/dev/null; then
 log_info_msg "Creating files and directories... "
 create_files # Always returns 0
 evaluate_retval
 fi

 exit $failed
 ;;
 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End cleanfs

D.12. /etc/rc.d/init.d/console
#!/bin/sh
##
Begin console
#
Description : Sets keymap and screen font
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
Alexander E. Patrakov
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

Linux From Scratch - Version 7.10

300

BEGIN INIT INFO
Provides: console
Required-Start:
Should-Start: $local_fs
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Sets up a localised console.
Description: Sets up fonts and language settings for the user's
local as defined by /etc/sysconfig/console.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

Native English speakers probably don't have /etc/sysconfig/console at all
[-r /etc/sysconfig/console] && . /etc/sysconfig/console

is_true()
{
 ["$1" = "1"] || ["$1" = "yes"] || ["$1" = "true"]
}

failed=0

case "${1}" in
 start)
 # See if we need to do anything
 if [-z "${KEYMAP}"] && [-z "${KEYMAP_CORRECTIONS}"] &&
 [-z "${FONT}"] && [-z "${LEGACY_CHARSET}"] &&
 ! is_true "${UNICODE}"; then
 exit 0
 fi

 # There should be no bogus failures below this line!
 log_info_msg "Setting up Linux console..."

 # Figure out if a framebuffer console is used
 [-d /sys/class/graphics/fb0] && use_fb=1 || use_fb=0

 # Figure out the command to set the console into the
 # desired mode
 is_true "${UNICODE}" &&
 MODE_COMMAND="echo -en '\033%G' && kbd_mode -u" ||
 MODE_COMMAND="echo -en '\033%@\033(K' && kbd_mode -a"

 # On framebuffer consoles, font has to be set for each vt in
 # UTF-8 mode. This doesn't hurt in non-UTF-8 mode also.

 ! is_true "${use_fb}" || [-z "${FONT}"] ||
 MODE_COMMAND="${MODE_COMMAND} && setfont ${FONT}"

 # Apply that command to all consoles mentioned in
 # /etc/inittab. Important: in the UTF-8 mode this should
 # happen before setfont, otherwise a kernel bug will
 # show up and the unicode map of the font will not be

Linux From Scratch - Version 7.10

301

 # used.

 for TTY in `grep '^[^#].*respawn:/sbin/agetty' /etc/inittab |
 grep -o '\btty[[:digit:]]*\b'`
 do
 openvt -f -w -c ${TTY#tty} -- \
 /bin/sh -c "${MODE_COMMAND}" || failed=1
 done

 # Set the font (if not already set above) and the keymap
 ["${use_fb}" == "1"] || [-z "${FONT}"] || setfont $FONT || failed=1

 [-z "${KEYMAP}"] ||
 loadkeys ${KEYMAP} >/dev/null 2>&1 ||
 failed=1

 [-z "${KEYMAP_CORRECTIONS}"] ||
 loadkeys ${KEYMAP_CORRECTIONS} >/dev/null 2>&1 ||
 failed=1

 # Convert the keymap from $LEGACY_CHARSET to UTF-8
 [-z "$LEGACY_CHARSET"] ||
 dumpkeys -c "$LEGACY_CHARSET" | loadkeys -u >/dev/null 2>&1 ||
 failed=1

 # If any of the commands above failed, the trap at the
 # top would set $failed to 1
 (exit $failed)
 evaluate_retval

 exit $failed
 ;;

 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End console

D.13. /etc/rc.d/init.d/localnet
#!/bin/sh
##
Begin localnet
#
Description : Loopback device
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

Linux From Scratch - Version 7.10

302

BEGIN INIT INFO
Provides: localnet
Required-Start: $local_fs
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop: 0 6
Short-Description: Starts the local network.
Description: Sets the hostname of the machine and starts the
loopback interface.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions
[-r /etc/sysconfig/network] && . /etc/sysconfig/network
[-r /etc/hostname] && HOSTNAME=`cat /etc/hostname`

case "${1}" in
 start)
 log_info_msg "Bringing up the loopback interface..."
 ip addr add 127.0.0.1/8 label lo dev lo
 ip link set lo up
 evaluate_retval

 log_info_msg "Setting hostname to ${HOSTNAME}..."
 hostname ${HOSTNAME}
 evaluate_retval
 ;;

 stop)
 log_info_msg "Bringing down the loopback interface..."
 ip link set lo down
 evaluate_retval
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 echo "Hostname is: $(hostname)"
 ip link show lo
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart|status}"
 exit 1
 ;;
esac

exit 0

Linux From Scratch - Version 7.10

303

End localnet

D.14. /etc/rc.d/init.d/sysctl
#!/bin/sh
##
Begin sysctl
#
Description : File uses /etc/sysctl.conf to set kernel runtime
parameters
#
Authors : Nathan Coulson (nathan@linuxfromscratch.org)
Matthew Burgress (matthew@linuxfromscratch.org)
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: sysctl
Required-Start: mountvirtfs
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: S
Default-Stop:
Short-Description: Makes changes to the proc filesystem
Description: Makes changes to the proc filesystem as defined in
/etc/sysctl.conf. See 'man sysctl(8)'.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 if [-f "/etc/sysctl.conf"]; then
 log_info_msg "Setting kernel runtime parameters..."
 sysctl -q -p
 evaluate_retval
 fi
 ;;

 status)
 sysctl -a
 ;;

 *)
 echo "Usage: ${0} {start|status}"
 exit 1
 ;;
esac

exit 0

Linux From Scratch - Version 7.10

304

End sysctl

D.15. /etc/rc.d/init.d/sysklogd
#!/bin/sh
##
Begin sysklogd
#
Description : Sysklogd loader
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: $syslog
Required-Start: localnet
Should-Start:
Required-Stop: $local_fs sendsignals
Should-Stop:
Default-Start: 3 4 5
Default-Stop: 0 1 2 6
Short-Description: Starts kernel and system log daemons.
Description: Starts kernel and system log daemons.
/etc/fstab.
X-LFS-Provided-By: LFS
END INIT INFO

Note: sysklogd is not started in runlevel 2 due to possible
remote logging configurations

. /lib/lsb/init-functions

case "${1}" in
 start)
 log_info_msg "Starting system log daemon..."
 parms=${SYSKLOGD_PARMS-'-m 0'}
 start_daemon /sbin/syslogd $parms
 evaluate_retval

 log_info_msg "Starting kernel log daemon..."
 start_daemon /sbin/klogd
 evaluate_retval
 ;;

 stop)
 log_info_msg "Stopping kernel log daemon..."
 killproc /sbin/klogd
 evaluate_retval

 log_info_msg "Stopping system log daemon..."

Linux From Scratch - Version 7.10

305

 killproc /sbin/syslogd
 evaluate_retval
 ;;

 reload)
 log_info_msg "Reloading system log daemon config file..."
 pid=`pidofproc syslogd`
 kill -HUP "${pid}"
 evaluate_retval
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 statusproc /sbin/syslogd
 statusproc klogd
 ;;

 *)
 echo "Usage: ${0} {start|stop|reload|restart|status}"
 exit 1
 ;;
esac

exit 0

End sysklogd

D.16. /etc/rc.d/init.d/network
#!/bin/sh
##
Begin network
#
Description : Network Control Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: $network
Required-Start: $local_fs swap localnet
Should-Start: $syslog
Required-Stop: $local_fs swap localnet
Should-Stop: $syslog

Linux From Scratch - Version 7.10

306

Default-Start: 3 4 5
Default-Stop: 0 1 2 6
Short-Description: Starts and configures network interfaces.
Description: Starts and configures network interfaces.
X-LFS-Provided-By: LFS
END INIT INFO

case "${1}" in
 start)
 # Start all network interfaces
 for file in /etc/sysconfig/ifconfig.*
 do
 interface=${file##*/ifconfig.}

 # Skip if $file is * (because nothing was found)
 if ["${interface}" = "*"]
 then
 continue
 fi

 /sbin/ifup ${interface}
 done
 ;;

 stop)
 # Reverse list
 net_files=""
 for file in /etc/sysconfig/ifconfig.*
 do
 net_files="${file} ${net_files}"
 done

 # Stop all network interfaces
 for file in ${net_files}
 do
 interface=${file##*/ifconfig.}

 # Skip if $file is * (because nothing was found)
 if ["${interface}" = "*"]
 then
 continue
 fi

 /sbin/ifdown ${interface}
 done
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart}"
 exit 1
 ;;

Linux From Scratch - Version 7.10

307

esac

exit 0

End network

D.17. /etc/rc.d/init.d/sendsignals
#!/bin/sh
##
Begin sendsignals
#
Description : Sendsignals Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: sendsignals
Required-Start:
Should-Start:
Required-Stop: $local_fs swap localnet
Should-Stop:
Default-Start:
Default-Stop: 0 6
Short-Description: Attempts to kill remaining processes.
Description: Attempts to kill remaining processes.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 stop)
 log_info_msg "Sending all processes the TERM signal..."
 killall5 -15
 error_value=${?}

 sleep ${KILLDELAY}

 if ["${error_value}" = 0 -o "${error_value}" = 2]; then
 log_success_msg
 else
 log_failure_msg
 fi

 log_info_msg "Sending all processes the KILL signal..."
 killall5 -9
 error_value=${?}

 sleep ${KILLDELAY}

Linux From Scratch - Version 7.10

308

 if ["${error_value}" = 0 -o "${error_value}" = 2]; then
 log_success_msg
 else
 log_failure_msg
 fi
 ;;

 *)
 echo "Usage: ${0} {stop}"
 exit 1
 ;;

esac

exit 0

End sendsignals

D.18. /etc/rc.d/init.d/reboot
#!/bin/sh
##
Begin reboot
#
Description : Reboot Scripts
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: reboot
Required-Start:
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: 6
Default-Stop:
Short-Description: Reboots the system.
Description: Reboots the System.
X-LFS-Provided-By: LFS
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 stop)
 log_info_msg "Restarting system..."
 reboot -d -f -i
 ;;

Linux From Scratch - Version 7.10

309

 *)
 echo "Usage: ${0} {stop}"
 exit 1
 ;;

esac

End reboot

D.19. /etc/rc.d/init.d/halt
#!/bin/sh
##
Begin halt
#
Description : Halt Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

BEGIN INIT INFO
Provides: halt
Required-Start:
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: 0
Default-Stop:
Short-Description: Halts the system.
Description: Halts the System.
X-LFS-Provided-By: LFS
END INIT INFO

case "${1}" in
 stop)
 halt -d -f -i -p
 ;;

 *)
 echo "Usage: {stop}"
 exit 1
 ;;
esac

End halt

D.20. /etc/rc.d/init.d/template
#!/bin/sh
##
Begin scriptname

Linux From Scratch - Version 7.10

310

#
Description :
#
Authors :
#
Version : LFS x.x
#
Notes :
#
##

BEGIN INIT INFO
Provides: template
Required-Start:
Should-Start:
Required-Stop:
Should-Stop:
Default-Start:
Default-Stop:
Short-Description:
Description:
X-LFS-Provided-By:
END INIT INFO

. /lib/lsb/init-functions

case "${1}" in
 start)
 log_info_msg "Starting..."
 start_daemon fully_qualified_path
 ;;

 stop)
 log_info_msg "Stopping..."
 killproc fully_qualified_path
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart}"
 exit 1
 ;;
esac

exit 0

End scriptname

D.21. /etc/sysconfig/modules
##

Linux From Scratch - Version 7.10

311

Begin /etc/sysconfig/modules
#
Description : Module auto-loading configuration
#
Authors :
#
Version : 00.00
#
Notes : The syntax of this file is as follows:
<module> [<arg1> <arg2> ...]
#
Each module should be on its own line, and any options that you want
passed to the module should follow it. The line deliminator is either
a space or a tab.
##

End /etc/sysconfig/modules

D.22. /etc/sysconfig/createfiles
##
Begin /etc/sysconfig/createfiles
#
Description : Createfiles script config file
#
Authors :
#
Version : 00.00
#
Notes : The syntax of this file is as follows:
if type is equal to "file" or "dir"
<filename> <type> <permissions> <user> <group>
if type is equal to "dev"
<filename> <type> <permissions> <user> <group> <devtype>
<major> <minor>
#
<filename> is the name of the file which is to be created
<type> is either file, dir, or dev.
file creates a new file
dir creates a new directory
dev creates a new device
<devtype> is either block, char or pipe
block creates a block device
char creates a character deivce
pipe creates a pipe, this will ignore the <major> and
<minor> fields
<major> and <minor> are the major and minor numbers used for
the device.
##

End /etc/sysconfig/createfiles

D.23. /etc/sysconfig/udev-retry
##

Linux From Scratch - Version 7.10

312

Begin /etc/sysconfig/udev_retry
#
Description : udev_retry script configuration
#
Authors :
#
Version : 00.00
#
Notes : Each subsystem that may need to be re-triggered after mountfs
runs should be listed in this file. Probable subsystems to be
listed here are rtc (due to /var/lib/hwclock/adjtime) and sound
(due to both /var/lib/alsa/asound.state and /usr/sbin/alsactl).
Entries are whitespace-separated.
##

rtc

End /etc/sysconfig/udev_retry

D.24. /sbin/ifup
#!/bin/sh
##
Begin /sbin/ifup
#
Description : Interface Up
#
Authors : Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.7
#
Notes : The IFCONFIG variable is passed to the SERVICE script
in the /lib/services directory, to indicate what file the
service should source to get interface specifications.
#
##

up()
{
 if ip link show $1 > /dev/null 2>&1; then
 link_status=`ip link show $1`

 if [-n "${link_status}"]; then
 if ! echo "${link_status}" | grep -q UP; then
 ip link set $1 up
 fi
 fi

 else
 log_failure_msg "\nInterface ${IFACE} doesn't exist."
 exit 1
 fi
}

Linux From Scratch - Version 7.10

313

RELEASE="7.7"

USAGE="Usage: $0 [-hV] [--help] [--version] interface"
VERSTR="LFS ifup, version ${RELEASE}"

while [$# -gt 0]; do
 case "$1" in
 --help | -h) help="y"; break ;;

 --version | -V) echo "${VERSTR}"; exit 0 ;;

 -*) echo "ifup: ${1}: invalid option" >&2
 echo "${USAGE}" >& 2
 exit 2 ;;

 *) break ;;
 esac
done

if [-n "$help"]; then
 echo "${VERSTR}"
 echo "${USAGE}"
 echo
 cat << HERE_EOF
ifup is used to bring up a network interface. The interface
parameter, e.g. eth0 or eth0:2, must match the trailing part of the
interface specifications file, e.g. /etc/sysconfig/ifconfig.eth0:2.

HERE_EOF
 exit 0
fi

file=/etc/sysconfig/ifconfig.${1}

Skip backup files
["${file}" = "${file%""~""}"] || exit 0

. /lib/lsb/init-functions

log_info_msg "Bringing up the ${1} interface... "

if [! -r "${file}"]; then
 log_failure_msg2 "${file} is missing or cannot be accessed."
 exit 1
fi

. $file

if ["$IFACE" = ""]; then
 log_failure_msg2 "${file} does not define an interface [IFACE]."
 exit 1
fi

Do not process this service if started by boot, and ONBOOT
is not set to yes
if ["${IN_BOOT}" = "1" -a "${ONBOOT}" != "yes"]; then
 log_skip_msg

Linux From Scratch - Version 7.10

314

 exit 0
fi

for S in ${SERVICE}; do
 if [! -x "/lib/services/${S}"]; then
 MSG="\nUnable to process ${file}. Either "
 MSG="${MSG}the SERVICE '${S} was not present "
 MSG="${MSG}or cannot be executed."
 log_failure_msg "$MSG"
 exit 1
 fi
done

if ["${SERVICE}" = "wpa"]; then log_success_msg; fi

Create/configure the interface
for S in ${SERVICE}; do
 IFCONFIG=${file} /lib/services/${S} ${IFACE} up
done

Bring up the interface and any components
for I in $IFACE $INTERFACE_COMPONENTS; do up $I; done

Set MTU if requested. Check if MTU has a "good" value.
if test -n "${MTU}"; then
 if [[${MTU} =~ ^[0-9]+$]] && [[$MTU -ge 68]] ; then
 for I in $IFACE $INTERFACE_COMPONENTS; do
 ip link set dev $I mtu $MTU;
 done
 else
 log_info_msg2 "Invalid MTU $MTU"
 fi
fi

Set the route default gateway if requested
if [-n "${GATEWAY}"]; then
 if ip route | grep -q default; then
 log_skip_msg "\n Gateway already setup; skipping."
 else
 log_info_msg "Setting up default gateway..."
 ip route add default via ${GATEWAY} dev ${IFACE}
 evaluate_retval
 fi
fi

End /sbin/ifup

D.25. /sbin/ifdown
#!/bin/bash
##
Begin /sbin/ifdown
#
Description : Interface Down
#
Authors : Nathan Coulson - nathan@linuxfromscratch.org

Linux From Scratch - Version 7.10

315

Kevin P. Fleming - kpfleming@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
Notes : the IFCONFIG variable is passed to the scripts found
in the /lib/services directory, to indicate what file the
service should source to get interface specifications.
#
##

RELEASE="7.0"

USAGE="Usage: $0 [-hV] [--help] [--version] interface"
VERSTR="LFS ifdown, version ${RELEASE}"

while [$# -gt 0]; do
 case "$1" in
 --help | -h) help="y"; break ;;

 --version | -V) echo "${VERSTR}"; exit 0 ;;

 -*) echo "ifup: ${1}: invalid option" >&2
 echo "${USAGE}" >& 2
 exit 2 ;;

 *) break ;;
 esac
done

if [-n "$help"]; then
 echo "${VERSTR}"
 echo "${USAGE}"
 echo
 cat << HERE_EOF
ifdown is used to bring down a network interface. The interface
parameter, e.g. eth0 or eth0:2, must match the trailing part of the
interface specifications file, e.g. /etc/sysconfig/ifconfig.eth0:2.

HERE_EOF
 exit 0
fi

file=/etc/sysconfig/ifconfig.${1}

Skip backup files
["${file}" = "${file%""~""}"] || exit 0

. /lib/lsb/init-functions

if [! -r "${file}"]; then
 log_warning_msg "${file} is missing or cannot be accessed."
 exit 1
fi

. ${file}

Linux From Scratch - Version 7.10

316

if ["$IFACE" = ""]; then
 log_failure_msg "${file} does not define an interface [IFACE]."
 exit 1
fi

We only need to first service to bring down the interface
S=`echo ${SERVICE} | cut -f1 -d" "`

if ip link show ${IFACE} > /dev/null 2>&1; then
 if [-n "${S}" -a -x "/lib/services/${S}"]; then
 IFCONFIG=${file} /lib/services/${S} ${IFACE} down
 else
 MSG="Unable to process ${file}. Either "
 MSG="${MSG}the SERVICE variable was not set "
 MSG="${MSG}or the specified service cannot be executed."
 log_failure_msg "$MSG"
 exit 1
 fi
else
 log_warning_msg "Interface ${1} doesn't exist."
fi

Leave the interface up if there are additional interfaces in the device
link_status=`ip link show ${IFACE} 2>/dev/null`

if [-n "${link_status}"]; then
 if ["$(echo "${link_status}" | grep UP)" != ""]; then
 if ["$(ip addr show ${IFACE} | grep 'inet ')" == ""]; then
 log_info_msg "Bringing down the ${IFACE} interface..."
 ip link set ${IFACE} down
 evaluate_retval
 fi
 fi
fi

End /sbin/ifdown

D.26. /lib/services/ipv4-static
#!/bin/sh
##
Begin /lib/services/ipv4-static
#
Description : IPV4 Static Boot Script
#
Authors : Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

. /lib/lsb/init-functions

. ${IFCONFIG}

Linux From Scratch - Version 7.10

317

if [-z "${IP}"]; then
 log_failure_msg "\nIP variable missing from ${IFCONFIG}, cannot continue."
 exit 1
fi

if [-z "${PREFIX}" -a -z "${PEER}"]; then
 log_warning_msg "\nPREFIX variable missing from ${IFCONFIG}, assuming 24."
 PREFIX=24
 args="${args} ${IP}/${PREFIX}"

elif [-n "${PREFIX}" -a -n "${PEER}"]; then
 log_failure_msg "\nPREFIX and PEER both specified in ${IFCONFIG}, cannot continue."
 exit 1

elif [-n "${PREFIX}"]; then
 args="${args} ${IP}/${PREFIX}"

elif [-n "${PEER}"]; then
 args="${args} ${IP} peer ${PEER}"
fi

if [-n "${LABEL}"]; then
 args="${args} label ${LABEL}"
fi

if [-n "${BROADCAST}"]; then
 args="${args} broadcast ${BROADCAST}"
fi

case "${2}" in
 up)
 if ["$(ip addr show ${1} 2>/dev/null | grep ${IP}/)" = ""]; then

 # Cosmetic output
 if ! $(echo ${SERVICE} | grep -q " "); then
 log_info_msg2 "\n" # Terminate the previous message
 fi

 log_info_msg "Adding IPv4 address ${IP} to the ${1} interface..."
 ip addr add ${args} dev ${1}
 evaluate_retval
 else
 log_warning_msg "Cannot add IPv4 address ${IP} to ${1}. Already present."
 fi
 ;;

 down)
 if ["$(ip addr show ${1} 2>/dev/null | grep ${IP}/)" != ""]; then
 log_info_msg "Removing IPv4 address ${IP} from the ${1} interface..."
 ip addr del ${args} dev ${1}
 evaluate_retval
 fi

 if [-n "${GATEWAY}"]; then
 # Only remove the gateway if there are no remaining ipv4 addresses
 if ["$(ip addr show ${1} 2>/dev/null | grep 'inet ')" != ""]; then
 log_info_msg "Removing default gateway..."

Linux From Scratch - Version 7.10

318

 ip route del default
 evaluate_retval
 fi
 fi
 ;;

 *)
 echo "Usage: ${0} [interface] {up|down}"
 exit 1
 ;;
esac

End /lib/services/ipv4-static

D.27. /lib/services/ipv4-static-route
#!/bin/sh
##
Begin /lib/services/ipv4-static-route
#
Description : IPV4 Static Route Script
#
Authors : Kevin P. Fleming - kpfleming@linuxfromscratch.org
DJ Lucas - dj@linuxfromscratch.org
Update : Bruce Dubbs - bdubbs@linuxfromscratch.org
#
Version : LFS 7.0
#
##

. /lib/lsb/init-functions

. ${IFCONFIG}

case "${TYPE}" in
 ("" | "network")
 need_ip=1
 need_gateway=1
 ;;

 ("default")
 need_gateway=1
 args="${args} default"
 desc="default"
 ;;

 ("host")
 need_ip=1
 ;;

 ("unreachable")
 need_ip=1
 args="${args} unreachable"
 desc="unreachable "
 ;;

 (*)

Linux From Scratch - Version 7.10

319

 log_failure_msg "Unknown route type (${TYPE}) in ${IFCONFIG}, cannot continue."
 exit 1
 ;;
esac

if [-n "${GATEWAY}"]; then
 MSG="The GATEWAY variable cannot be set in ${IFCONFIG} for static routes.\n"
 log_failure_msg "$MSG Use STATIC_GATEWAY only, cannot continue"
 exit 1
fi

if [-n "${need_ip}"]; then
 if [-z "${IP}"]; then
 log_failure_msg "IP variable missing from ${IFCONFIG}, cannot continue."
 exit 1
 fi

 if [-z "${PREFIX}"]; then
 log_failure_msg "PREFIX variable missing from ${IFCONFIG}, cannot continue."
 exit 1
 fi

 args="${args} ${IP}/${PREFIX}"
 desc="${desc}${IP}/${PREFIX}"
fi

if [-n "${need_gateway}"]; then
 if [-z "${STATIC_GATEWAY}"]; then
 log_failure_msg "STATIC_GATEWAY variable missing from ${IFCONFIG}, cannot continue."
 exit 1
 fi
 args="${args} via ${STATIC_GATEWAY}"
fi

if [-n "${SOURCE}"]; then
 args="${args} src ${SOURCE}"
fi

case "${2}" in
 up)
 log_info_msg "Adding '${desc}' route to the ${1} interface..."
 ip route add ${args} dev ${1}
 evaluate_retval
 ;;

 down)
 log_info_msg "Removing '${desc}' route from the ${1} interface..."
 ip route del ${args} dev ${1}
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} [interface] {up|down}"
 exit 1
 ;;
esac

Linux From Scratch - Version 7.10

320

End /lib/services/ipv4-static-route

Linux From Scratch - Version 7.10

321

Appendix E. Udev configuration rules
The rules in this appendix are listed for convenience. Installation is normally done via instructions in Section 6.65,
“Eudev-3.2”.

E.1. 55-lfs.rules
/etc/udev/rules.d/55-lfs.rules: Rule definitions for LFS.

Core kernel devices

This causes the system clock to be set as soon as /dev/rtc becomes available.
SUBSYSTEM=="rtc", ACTION=="add", MODE="0644", RUN+="/etc/rc.d/init.d/setclock start"
KERNEL=="rtc", ACTION=="add", MODE="0644", RUN+="/etc/rc.d/init.d/setclock start"

Comms devices

KERNEL=="ippp[0-9]*", GROUP="dialout"
KERNEL=="isdn[0-9]*", GROUP="dialout"
KERNEL=="isdnctrl[0-9]*", GROUP="dialout"
KERNEL=="dcbri[0-9]*", GROUP="dialout"

Linux From Scratch - Version 7.10

322

Appendix F. LFS Licenses
This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License.

Computer instructions may be extracted from the book under the MIT License.

F.1. Creative Commons License
Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 2.0

Important

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL
SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS.
CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED,
AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its
entirety in unmodified form, along with a number of other contributions, constituting separate and independent
works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not
be considered a Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as
a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or
adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the
purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording,
the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a
Derivative Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the
terms of this License with respect to the Work, or who has received express permission from the Licensor to
exercise rights under this License despite a previous violation.

Linux From Scratch - Version 7.10

323

g. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in
the title of this License: Attribution, Noncommercial, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first
sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-
free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the
Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of
a digital audio transmission Derivative Works;

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above
rights include the right to make such modifications as are technically necessary to exercise the rights in other media
and formats. All rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights
set forth in Sections 4(e) and 4(f).

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the
terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with
every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally
perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this License
or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly
display, publicly perform, or publicly digitally perform the Work with any technological measures that control
access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies
to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from
the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Collective Work any reference to such
Licensor or the Original Author, as requested. If You create a Derivative Work, upon notice from any Licensor
You must, to the extent practicable, remove from the Derivative Work any reference to such Licensor or the
Original Author, as requested.

b. You may distribute, publicly display, publicly perform, or publicly digitally perform a Derivative Work only
under the terms of this License, a later version of this License with the same License Elements as this License, or a
Creative Commons iCommons license that contains the same License Elements as this License (e.g. Attribution-
NonCommercial-ShareAlike 2.0 Japan). You must include a copy of, or the Uniform Resource Identifier for, this
License or other license specified in the previous sentence with every copy or phonorecord of each Derivative
Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or
impose any terms on the Derivative Works that alter or restrict the terms of this License or the recipients'
exercise of the rights granted hereunder, and You must keep intact all notices that refer to this License and to
the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally
perform the Derivative Work with any technological measures that control access or use of the Work in a manner

Linux From Scratch - Version 7.10

324

inconsistent with the terms of this License Agreement. The above applies to the Derivative Work as incorporated
in a Collective Work, but this does not require the Collective Work apart from the Derivative Work itself to be
made subject to the terms of this License.

c. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended
for or directed toward commercial advantage or private monetary compensation. The exchange of the Work for
other copyrighted works by means of digital file-sharing or otherwise shall not be considered to be intended for
or directed toward commercial advantage or private monetary compensation, provided there is no payment of
any monetary compensation in connection with the exchange of copyrighted works.

d. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative
Works or Collective Works, You must keep intact all copyright notices for the Work and give the Original Author
credit reasonable to the medium or means You are utilizing by conveying the name (or pseudonym if applicable)
of the Original Author if supplied; the title of the Work if supplied; to the extent reasonably practicable, the
Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI
does not refer to the copyright notice or licensing information for the Work; and in the case of a Derivative
Work, a credit identifying the use of the Work in the Derivative Work (e.g., "French translation of the Work by
Original Author," or "Screenplay based on original Work by Original Author"). Such credit may be implemented
in any reasonable manner; provided, however, that in the case of a Derivative Work or Collective Work, at a
minimum such credit will appear where any other comparable authorship credit appears and in a manner at least
as prominent as such other comparable authorship credit.

e. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public
performance or public digital performance (e.g. webcast) of the Work if that performance is primarily intended
for or directed toward commercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or private
monetary compensation. 6. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where
the Work is a sound recording, Licensor reserves the exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast)
of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or
the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or directed
toward commercial advantage or private monetary compensation.

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording,
Licensor reserves the exclusive right to collect, whether individually or via a performance-rights society
(e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the
compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other
jurisdictions), if Your public digital performance is primarily intended for or directed toward commercial
advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer

Linux From Scratch - Version 7.10

325

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE
USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms
of this License. Individuals or entities who have received Derivative Works or Collective Works from You under
this License, however, will not have their licenses terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under
different license terms or to stop distributing the Work at any time; provided, however that any such election
will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the
terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may
not be modified without the mutual written agreement of the Licensor and You.

Linux From Scratch - Version 7.10

326

Important

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages arising
in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, neither
party will use the trademark "Creative Commons" or any related trademark or logo of Creative Commons
without the prior written consent of Creative Commons. Any permitted use will be in compliance with
Creative Commons' then-current trademark usage guidelines, as may be published on its website or otherwise
made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

F.2. The MIT License
Copyright © 1999-2016 Gerard Beekmans

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://creativecommons.org/

Linux From Scratch - Version 7.10

327

Index
Packages
Acl: 123
Attr: 121
Autoconf: 153
Automake: 155
Bash: 139
tools: 60

Bash: 139
tools: 60

Bc: 141
Binutils: 104
tools, pass 1: 37
tools, pass 2: 48

Binutils: 104
tools, pass 1: 37
tools, pass 2: 48

Binutils: 104
tools, pass 1: 37
tools, pass 2: 48

Bison: 134
Bootscripts: 213
usage: 223

Bootscripts: 213
usage: 223

Bzip2: 115
tools: 61

Bzip2: 115
tools: 61

Check: 58
Coreutils: 167
tools: 62

Coreutils: 167
tools: 62

DejaGNU: 57
Diffutils: 172
tools: 63

Diffutils: 172
tools: 63

E2fsprogs: 164
Eudev: 194
configuring: 195

Eudev: 194
configuring: 195

Expat: 145

Expect: 55
File: 103
tools: 64

File: 103
tools: 64

Findutils: 174
tools: 65

Findutils: 174
tools: 65

Flex: 135
Gawk: 173
tools: 66

Gawk: 173
tools: 66

GCC: 110
tools, libstdc++: 46
tools, pass 1: 39
tools, pass 2: 50

GCC: 110
tools, libstdc++: 46
tools, pass 1: 39
tools, pass 2: 50

GCC: 110
tools, libstdc++: 46
tools, pass 1: 39
tools, pass 2: 50

GCC: 110
tools, libstdc++: 46
tools, pass 1: 39
tools, pass 2: 50

GDBM: 143
Gettext: 160
tools: 67

Gettext: 160
tools: 67

Glibc: 93
tools: 43

Glibc: 93
tools: 43

GMP: 106
Gperf: 144
Grep: 136
tools: 68

Grep: 136
tools: 68

Groff: 176
GRUB: 179

Linux From Scratch - Version 7.10

328

Gzip: 182
tools: 69

Gzip: 182
tools: 69

Iana-Etc: 132
Inetutils: 146
Intltool: 152
IPRoute2: 184
Kbd: 186
Kmod: 158
Less: 181
Libcap: 125
Libpipeline: 188
Libtool: 142
Linux: 240
API headers: 91
tools, API headers: 42

Linux: 240
API headers: 91
tools, API headers: 42

Linux: 240
API headers: 91
tools, API headers: 42

M4: 133
tools: 70

M4: 133
tools: 70

Make: 189
tools: 71

Make: 189
tools: 71

Man-DB: 201
Man-pages: 92
MPC: 109
MPFR: 108
Ncurses: 118
tools: 59

Ncurses: 118
tools: 59

Patch: 190
tools: 72

Patch: 190
tools: 72

Perl: 148
tools: 73

Perl: 148
tools: 73

Pkgconfig: 117
Procps-ng: 162
Psmisc: 131
rc.site: 230
Readline: 137
Sed: 126
tools: 74

Sed: 126
tools: 74

Shadow: 127
configuring: 128

Shadow: 127
configuring: 128

Sysklogd: 191
configuring: 191

Sysklogd: 191
configuring: 191

Sysvinit: 193
configuring: 224

Sysvinit: 193
configuring: 224

Tar: 204
tools: 75

Tar: 204
tools: 75

Tcl-core: 53
Texinfo: 205
tools: 76

Texinfo: 205
tools: 76

Udev
usage: 215

Util-linux: 196
tools: 77

Util-linux: 196
tools: 77

Vim: 207
XML::Parser: 151
Xz: 156
tools: 78

Xz: 156
tools: 78

Zlib: 102

Programs
a2p: 148, 149
accessdb: 201, 202

Linux From Scratch - Version 7.10

329

aclocal: 155, 155
aclocal-1.15: 155, 155
addftinfo: 176, 176
addpart: 196, 197
addr2line: 104, 105
afmtodit: 176, 176
agetty: 196, 197
apropos: 201, 203
ar: 104, 105
as: 104, 105
attr: 121, 121
autoconf: 153, 153
autoheader: 153, 153
autom4te: 153, 153
automake: 155, 155
automake-1.15: 155, 155
autopoint: 160, 160
autoreconf: 153, 153
autoscan: 153, 153
autoupdate: 153, 153
awk: 173, 173
badblocks: 164, 165
base64: 167, 168, 167, 168
base64: 167, 168, 167, 168
basename: 167, 168
bash: 139, 140
bashbug: 139, 140
bc: 141, 141
bison: 134, 134
blkdiscard: 196, 197
blkid: 196, 197
blockdev: 196, 197
bootlogd: 193, 193
bridge: 184, 184
bunzip2: 115, 116
bzcat: 115, 116
bzcmp: 115, 116
bzdiff: 115, 116
bzegrep: 115, 116
bzfgrep: 115, 116
bzgrep: 115, 116
bzip2: 115, 116
bzip2recover: 115, 116
bzless: 115, 116
bzmore: 115, 116
c++: 110, 113
c++filt: 104, 105

c2ph: 148, 149
cal: 196, 197
capsh: 125, 125
captoinfo: 118, 119
cat: 167, 168
catchsegv: 93, 97
catman: 201, 203
cc: 110, 113
cfdisk: 196, 197
chacl: 123, 124
chage: 127, 129
chattr: 164, 165
chcon: 167, 168
chcpu: 196, 197
checkmk: 58, 58
chem: 176, 176
chfn: 127, 129
chgpasswd: 127, 129
chgrp: 167, 168
chmod: 167, 169
chown: 167, 169
chpasswd: 127, 129
chroot: 167, 169
chrt: 196, 197
chsh: 127, 129
chvt: 186, 187
cksum: 167, 169
clear: 118, 120
cmp: 172, 172
code: 174, 174
col: 196, 197
colcrt: 196, 197
colrm: 196, 197
column: 196, 197
comm: 167, 169
compile_et: 164, 165
corelist: 148, 149
cp: 167, 169
cpan: 148, 149
cpan2dist: 148, 149
cpanp: 148, 149
cpanp-run-perl: 148, 149
cpp: 110, 113
csplit: 167, 169
ctrlaltdel: 196, 197
ctstat: 184, 184
cut: 167, 169

Linux From Scratch - Version 7.10

330

date: 167, 169
dc: 141, 141
dd: 167, 169
deallocvt: 186, 187
debugfs: 164, 165
delpart: 196, 197
depmod: 158, 158
df: 167, 169
diff: 172, 172
diff3: 172, 172
dir: 167, 169
dircolors: 167, 169
dirname: 167, 169
dmesg: 196, 197
dnsdomainname: 146, 147
du: 167, 169
dumpe2fs: 164, 166
dumpkeys: 186, 187
e2freefrag: 164, 166
e2fsck: 164, 166
e2image: 164, 166
e2label: 164, 166
e2undo: 164, 166
e4defrag: 164, 166
echo: 167, 169
egrep: 136, 136
eject: 196, 197
elfedit: 104, 105
enc2xs: 148, 149
encguess: 148, 149
env: 167, 169
envsubst: 160, 160
eqn: 176, 176
eqn2graph: 176, 176
ex: 207, 208
expand: 167, 169
expect: 55, 56
expiry: 127, 129
expr: 167, 169
factor: 167, 169
faillog: 127, 129
fallocate: 196, 198
false: 167, 169
fdformat: 196, 198
fdisk: 196, 198
fgconsole: 186, 187
fgrep: 136, 136

file: 103, 103
filefrag: 164, 166
find: 174, 174
find2perl: 148, 149
findfs: 196, 198
findmnt: 196, 198
flex: 135, 135
flex++: 135, 135
flock: 196, 198
fmt: 167, 169
fold: 167, 169
free: 162, 162
fsck: 196, 198
fsck.cramfs: 196, 198
fsck.ext2: 164, 166
fsck.ext3: 164, 166
fsck.ext4: 164, 166
fsck.ext4dev: 164, 166
fsck.minix: 196, 198
fsfreeze: 196, 198
fstab-decode: 193, 193
fstrim: 196, 198
ftp: 146, 147
fuser: 131, 131
g++: 110, 113
gawk: 173, 173
gawk-4.1.3: 173, 173
gcc: 110, 113
gc-ar: 110, 113
gc-nm: 110, 113
gc-ranlib: 110, 114
gcov: 110, 114
gdbmtool: 143, 143
gdbm_dump: 143, 143
gdbm_load: 143, 143
gdiffmk: 176, 176
gencat: 93, 98
genl: 184, 184
getcap: 125, 125
getconf: 93, 98
getent: 93, 98
getfacl: 123, 124
getfattr: 121, 121
getkeycodes: 186, 187
getopt: 196, 198
getpcaps: 125, 125
gettext: 160, 160

Linux From Scratch - Version 7.10

331

gettext.sh: 160, 160
gettextize: 160, 160
glilypond: 176, 176
gpasswd: 127, 129
gperf: 144, 144
gperl: 176, 176
gpinyin: 176, 176
gprof: 104, 105
grap2graph: 176, 177
grep: 136, 136
grn: 176, 177
grodvi: 176, 177
groff: 176, 177
groffer: 176, 177
grog: 176, 177
grolbp: 176, 177
grolj4: 176, 177
gropdf: 176, 177
grops: 176, 177
grotty: 176, 177
groupadd: 127, 129
groupdel: 127, 129
groupmems: 127, 129
groupmod: 127, 129
groups: 167, 169
grpck: 127, 129
grpconv: 127, 129
grpunconv: 127, 129
grub-bios-setup: 179, 179
grub-editenv: 179, 179
grub-file: 179, 179
grub-fstest: 179, 179
grub-glue-efi: 179, 180
grub-install: 179, 180
grub-kbdcomp: 179, 180
grub-macbless: 179, 180
grub-menulst2cfg: 179, 180
grub-mkconfig: 179, 180
grub-mkimage: 179, 180
grub-mklayout: 179, 180
grub-mknetdir: 179, 180
grub-mkpasswd-pbkdf2: 179, 180
grub-mkrelpath: 179, 180
grub-mkrescue: 179, 180
grub-mkstandalone: 179, 180
grub-ofpathname: 179, 180
grub-probe: 179, 180

grub-reboot: 179, 180
grub-render-label: 179, 180
grub-script-check: 179, 180
grub-set-default: 179, 180
grub-setup: 179, 180
grub-syslinux2cfg: 179, 180
gunzip: 182, 182
gzexe: 182, 182
gzip: 182, 182
h2ph: 148, 149
h2xs: 148, 149
halt: 193, 193
head: 167, 169
hexdump: 196, 198
hostid: 167, 169
hostname: 146, 147
hostname: 160, 160
hpftodit: 176, 177
hwclock: 196, 198
i386: 196, 198
iconv: 93, 98
iconvconfig: 93, 98
id: 167, 169
ifcfg: 184, 184
ifconfig: 146, 147
ifnames: 153, 153
ifstat: 184, 184
igawk: 173, 173
indxbib: 176, 177
info: 205, 206
infocmp: 118, 120
infotocap: 118, 120
init: 193, 193
insmod: 158, 159
install: 167, 169
install-info: 205, 206
instmodsh: 148, 149
intltool-extract: 152, 152
intltool-merge: 152, 152
intltool-prepare: 152, 152
intltool-update: 152, 152
intltoolize: 152, 152
ionice: 196, 198
ip: 184, 184
ipcmk: 196, 198
ipcrm: 196, 198
ipcs: 196, 198

Linux From Scratch - Version 7.10

332

isosize: 196, 198
join: 167, 169
json_pp: 148, 149
kbdinfo: 186, 187
kbdrate: 186, 187
kbd_mode: 186, 187
kill: 196, 198
killall: 131, 131
killall5: 193, 193
klogd: 191, 191
kmod: 158, 159
last: 196, 198
lastb: 196, 198
lastlog: 127, 129
ld: 104, 105
ld.bfd: 104, 105
ldattach: 196, 198
ldconfig: 93, 98
ldd: 93, 98
lddlibc4: 93, 98
less: 181, 181
lessecho: 181, 181
lesskey: 181, 181
lex: 135, 135
lexgrog: 201, 203
lfskernel-4.7.2: 240, 243
libasan: 110, 114
libnetcfg: 148, 149
libtool: 142, 142
libtoolize: 142, 142
link: 167, 169
linux32: 196, 198
linux64: 196, 198
lkbib: 176, 177
ln: 167, 169
lnstat: 184, 185
loadkeys: 186, 187
loadunimap: 186, 187
locale: 93, 98
localedef: 93, 98
locate: 174, 174
logger: 196, 198
login: 127, 129
logname: 167, 169
logoutd: 127, 129
logsave: 164, 166
look: 196, 198

lookbib: 176, 177
losetup: 196, 198
ls: 167, 170
lsattr: 164, 166
lsblk: 196, 198
lscpu: 196, 198
lsipc: 196, 198
lslocks: 196, 198
lslogins: 196, 198
lsmod: 158, 159
lzcat: 156, 156
lzcmp: 156, 156
lzdiff: 156, 156
lzegrep: 156, 157
lzfgrep: 156, 157
lzgrep: 156, 157
lzless: 156, 157
lzma: 156, 157
lzmadec: 156, 157
lzmainfo: 156, 157
lzmore: 156, 157
m4: 133, 133
make: 189, 189
makedb: 93, 98
makeinfo: 205, 206
man: 201, 203
mandb: 201, 203
manpath: 201, 203
mapscrn: 186, 187
mcookie: 196, 199
md5sum: 167, 170
mesg: 196, 199
mkdir: 167, 170
mke2fs: 164, 166
mkfifo: 167, 170
mkfs: 196, 199
mkfs.bfs: 196, 199
mkfs.cramfs: 196, 199
mkfs.ext2: 164, 166
mkfs.ext3: 164, 166
mkfs.ext4: 164, 166
mkfs.ext4dev: 164, 166
mkfs.minix: 196, 199
mklost+found: 164, 166
mknod: 167, 170
mkswap: 196, 199
mktemp: 167, 170

Linux From Scratch - Version 7.10

333

mk_cmds: 164, 166
mmroff: 176, 177
modinfo: 158, 159
modprobe: 158, 159
more: 196, 199
mount: 196, 199
mountpoint: 196, 199
msgattrib: 160, 161
msgcat: 160, 161
msgcmp: 160, 161
msgcomm: 160, 161
msgconv: 160, 161
msgen: 160, 161
msgexec: 160, 161
msgfilter: 160, 161
msgfmt: 160, 161
msggrep: 160, 161
msginit: 160, 161
msgmerge: 160, 161
msgunfmt: 160, 161
msguniq: 160, 161
mtrace: 93, 98
mv: 167, 170
namei: 196, 199
ncursesw6-config: 118, 120
neqn: 176, 177
newgidmap: 127, 129
newgrp: 127, 129
newuidmap: 127, 129
newusers: 127, 129
ngettext: 160, 161
nice: 167, 170
nl: 167, 170
nm: 104, 105
nohup: 167, 170
nologin: 127, 129
nproc: 167, 170
nroff: 176, 177
nscd: 93, 98
nsenter: 196, 199
nstat: 184, 185
numfmt: 167, 170
objcopy: 104, 105
objdump: 104, 105
od: 167, 170
oldfind: 174, 174
openvt: 186, 187

partx: 196, 199
passwd: 127, 129
paste: 167, 170
patch: 190, 190
pathchk: 167, 170
pdfmom: 176, 177
pdfroff: 176, 177
pdftexi2dvi: 205, 206
peekfd: 131, 131
perl: 148, 149
perl5.24.0: 148, 149
perlbug: 148, 149
perldoc: 148, 149
perlivp: 148, 149
perlthanks: 148, 149
pfbtops: 176, 177
pg: 196, 199
pgrep: 162, 162
pic: 176, 177
pic2graph: 176, 177
piconv: 148, 150
pidof: 162, 163
ping: 146, 147
ping6: 146, 147
pinky: 167, 170
pivot_root: 196, 199
pkg-config: 117, 117
pkill: 162, 163
pl2pm: 148, 150
pldd: 93, 98
pmap: 162, 163
pod2html: 148, 150
pod2latex: 148, 150
pod2man: 148, 150
pod2texi: 205, 206
pod2text: 148, 150
pod2usage: 148, 150
podchecker: 148, 150
podselect: 148, 150
post-grohtml: 176, 177
poweroff: 193, 193
pr: 167, 170
pre-grohtml: 176, 177
preconv: 176, 177
printenv: 167, 170
printf: 167, 170
prlimit: 196, 199

Linux From Scratch - Version 7.10

334

prove: 148, 150
prtstat: 131, 131
ps: 162, 163
psfaddtable: 186, 187
psfgettable: 186, 187
psfstriptable: 186, 187
psfxtable: 186, 187
pstree: 131, 131
pstree.x11: 131, 131
pstruct: 148, 150
ptar: 148, 150
ptardiff: 148, 150
ptargrep: 148, 150
ptx: 167, 170
pwck: 127, 129
pwconv: 127, 129
pwd: 167, 170
pwdx: 162, 163
pwunconv: 127, 129
ranlib: 104, 105
raw: 196, 199
readelf: 104, 105
readlink: 167, 170
readprofile: 196, 199
realpath: 167, 170
reboot: 193, 193
recode-sr-latin: 160, 161
refer: 176, 177
rename: 196, 199
renice: 196, 199
reset: 118, 120
resize2fs: 164, 166
resizepart: 196, 199
rev: 196, 199
rm: 167, 170
rmdir: 167, 170
rmmod: 158, 159
roff2dvi: 176, 177
roff2html: 176, 178
roff2pdf: 176, 178
roff2ps: 176, 178
roff2text: 176, 178
roff2x: 176, 178
routef: 184, 185
routel: 184, 185
rpcgen: 93, 98
rtacct: 184, 185

rtcwake: 196, 199
rtmon: 184, 185
rtpr: 184, 185
rtstat: 184, 185
runcon: 167, 170
runlevel: 193, 193
runtest: 57, 57
rview: 207, 209
rvim: 207, 209
s2p: 148, 150
script: 196, 199
scriptreplay: 196, 199
sdiff: 172, 172
sed: 126, 126
seq: 167, 170
setacl: 123, 124
setarch: 196, 199
setattr: 121, 121
setfont: 186, 187
setkeycodes: 186, 187
setleds: 186, 187
setmetamode: 186, 187
setsid: 196, 199
setterm: 196, 199
setvtrgb: 186, 187
sfdisk: 196, 199
sg: 127, 130
sh: 139, 140
sha1sum: 167, 170
sha224sum: 167, 170
sha256sum: 167, 170
sha384sum: 167, 170
sha512sum: 167, 170
shasum: 148, 150
showconsolefont: 186, 187
showkey: 186, 187
shred: 167, 170
shuf: 167, 170
shutdown: 193, 193
size: 104, 105
slabtop: 162, 163
sleep: 167, 170
sln: 93, 98
soelim: 176, 178
sort: 167, 171
sotruss: 93, 98
splain: 148, 150

Linux From Scratch - Version 7.10

335

split: 167, 171
sprof: 93, 98
ss: 184, 185
stat: 167, 171
stdbuf: 167, 171
strings: 104, 105
strip: 104, 105
stty: 167, 171
su: 127, 130
sulogin: 196, 199
sum: 167, 171
swaplabel: 196, 199
swapoff: 196, 199
swapon: 196, 199
switch_root: 196, 199
sync: 167, 171
sysctl: 162, 163
syslogd: 191, 192
tabs: 118, 120
tac: 167, 171
tail: 167, 171
tailf: 196, 199
talk: 146, 147
tar: 204, 204
taskset: 196, 200
tbl: 176, 178
tc: 184, 185
tclsh: 53, 54
tclsh8.6: 53, 54
tee: 167, 171
telinit: 193, 193
telnet: 146, 147
test: 167, 171
texi2dvi: 205, 206
texi2pdf: 205, 206
texi2any: 205, 206
texindex: 205, 206
tfmtodit: 176, 178
tftp: 146, 147
tic: 118, 120
timeout: 167, 171
tload: 162, 163
toe: 118, 120
top: 162, 163
touch: 167, 171
tput: 118, 120
tr: 167, 171

traceroute: 146, 147
troff: 176, 178
true: 167, 171
truncate: 167, 171
tset: 118, 120
tsort: 167, 171
tty: 167, 171
tune2fs: 164, 166
tzselect: 93, 98
udevadm: 194, 195
udevd: 194, 195
ul: 196, 200
umount: 196, 200
uname: 167, 171
uname26: 196, 200
uncompress: 182, 182
unexpand: 167, 171
unicode_start: 186, 187
unicode_stop: 186, 187
uniq: 167, 171
unlink: 167, 171
unlzma: 156, 157
unshare: 196, 200
unxz: 156, 157
updatedb: 174, 174
uptime: 162, 163
useradd: 127, 130
userdel: 127, 130
usermod: 127, 130
users: 167, 171
utmpdump: 196, 200
uuidd: 196, 200
uuidgen: 196, 200
vdir: 167, 171
vi: 207, 209
view: 207, 209
vigr: 127, 130
vim: 207, 209
vimdiff: 207, 209
vimtutor: 207, 209
vipw: 127, 130
vmstat: 162, 163
w: 162, 163
wall: 196, 200
watch: 162, 163
wc: 167, 171
wdctl: 196, 200

Linux From Scratch - Version 7.10

336

whatis: 201, 203
whereis: 196, 200
who: 167, 171
whoami: 167, 171
wipefs: 196, 200
x86_64: 196, 200
xargs: 174, 175
xgettext: 160, 161
xmlwf: 145, 145
xsubpp: 148, 150
xtrace: 93, 98
xxd: 207, 209
xz: 156, 157
xzcat: 156, 157
xzcmp: 156, 157
xzdec: 156, 157
xzdiff: 156, 157
xzegrep: 156, 157
xzfgrep: 156, 157
xzgrep: 156, 157
xzless: 156, 157
xzmore: 156, 157
yacc: 134, 134
yes: 167, 171
zcat: 182, 182
zcmp: 182, 182
zdiff: 182, 182
zdump: 93, 98
zegrep: 182, 182
zfgrep: 182, 182
zforce: 182, 182
zgrep: 182, 182
zic: 93, 98
zipdetails: 148, 150
zless: 182, 182
zmore: 182, 183
znew: 182, 183
zramctl: 196, 200

Libraries
Expat: 151, 151
ld-2.24.so: 93, 98
libacl: 123, 124
libanl: 93, 98
libasprintf: 160, 161
libattr: 121, 122
libbfd: 104, 105

libblkid: 196, 200
libBrokenLocale: 93, 98
libbz2: 115, 116
libc: 93, 98
libcap: 125, 125
libcheck: 58, 58
libcidn: 93, 98
libcom_err: 164, 166
libcrypt: 93, 98
libcursesw: 118, 120
libdl: 93, 98
libe2p: 164, 166
libexpat: 145, 145
libexpect-5.45: 55, 56
libext2fs: 164, 166
libfdisk: 196, 200
libfl: 135, 135
libformw: 118, 120
libg: 93, 98
libgcc: 110, 114
libgcov: 110, 114
libgdbm: 143, 143
libgdbm_compat: 143, 143
libgettextlib: 160, 161
libgettextpo: 160, 161
libgettextsrc: 160, 161
libgmp: 106, 107
libgmpxx: 106, 107
libgomp: 110, 114
libhistory: 137, 138
libiberty: 110, 114
libieee: 93, 98
libkmod: 158
libltdl: 142, 142
liblto_plugin: 110, 114
liblzma: 156, 157
libm: 93, 99
libmagic: 103, 103
libman: 201, 203
libmandb: 201, 203
libmcheck: 93, 99
libmemusage: 93, 99
libmenuw: 118, 120
libmount: 196, 200
libmpc: 109, 109
libmpfr: 108, 108
libncursesw: 118, 120

Linux From Scratch - Version 7.10

337

libnsl: 93, 99
libnss: 93, 99
libopcodes: 104, 105
libpanelw: 118, 120
libpipeline: 188
libprocps: 162, 163
libpthread: 93, 99
libquadmath: 110, 114
libreadline: 137, 138
libresolv: 93, 99
librpcsvc: 93, 99
librt: 93, 99
libSegFault: 93, 98
libsmartcols: 196, 200
libss: 164, 166
libssp: 110, 114
libstdbuf: 167, 171
libstdc++: 110, 114
libsupc++: 110, 114
libtcl8.6.so: 53, 54
libtclstub8.6.a: 53, 54
libthread_db: 93, 99
libtsan: 110, 114
libudev: 194, 195
libutil: 93, 99
libuuid: 196, 200
liby: 134, 134
libz: 102, 102
preloadable_libintl: 160, 161

Scripts
checkfs: 213, 213
cleanfs: 213, 213
console: 213, 213
configuring: 227

console: 213, 213
configuring: 227

File creation at boot
configuring: 230

functions: 213, 213
halt: 213, 213
hostname
configuring: 222

ifdown: 213, 213
ifup: 213, 213
ipv4-static: 213, 214
localnet: 213, 213

/etc/hosts: 222
localnet: 213, 213
/etc/hosts: 222

modules: 213, 213
mountfs: 213, 213
mountvirtfs: 213, 213
network: 213, 213
/etc/hosts: 222
configuring: 221

network: 213, 213
/etc/hosts: 222
configuring: 221

network: 213, 213
/etc/hosts: 222
configuring: 221

rc: 213, 213
reboot: 213, 213
setclock
configuring: 226

sendsignals: 213, 213
setclock: 213, 213
swap: 213, 214
sysctl: 213, 214
sysklogd: 213, 214
configuring: 230

sysklogd: 213, 214
configuring: 230

template: 213, 214
udev: 213, 214
udev_retry: 213, 214

Others
/boot/config-4.7.2: 240, 243
/boot/System.map-4.7.2: 240, 243
/dev/*: 82
/etc/fstab: 238
/etc/group: 88
/etc/hosts: 222
/etc/inittab: 224
/etc/inputrc: 235
/etc/ld.so.conf: 97
/etc/lfs-release: 246
/etc/localtime: 95
/etc/lsb-release: 246
/etc/modprobe.d/usb.conf: 242
/etc/nsswitch.conf: 95
/etc/passwd: 88

Linux From Scratch - Version 7.10

338

/etc/profile: 233
/etc/protocols: 132
/etc/resolv.conf: 222
/etc/services: 132
/etc/syslog.conf: 191
/etc/udev: 194, 195
/etc/udev/hwdb.bin: 195
/etc/vimrc: 208
/usr/include/asm-generic/*.h: 91, 91
/usr/include/asm/*.h: 91, 91
/usr/include/drm/*.h: 91, 91
/usr/include/linux/*.h: 91, 91
/usr/include/mtd/*.h: 91, 91
/usr/include/rdma/*.h: 91, 91
/usr/include/scsi/*.h: 91, 91
/usr/include/sound/*.h: 91, 91
/usr/include/video/*.h: 91, 91
/usr/include/xen/*.h: 91, 91
/var/log/btmp: 88
/var/log/lastlog: 88
/var/log/wtmp: 88
/var/run/utmp: 88
/etc/shells: 237
man pages: 92, 92

	Linux From Scratch
	Table of Contents
	Preface
	Foreword
	Audience
	LFS Target Architectures
	LFS and Standards
	Rationale for Packages in the Book
	Prerequisites
	Typography
	Structure
	Part I - Introduction
	Part II - Preparing for the Build
	Part III - Building the LFS System

	Errata

	Part I. Introduction
	Chapter 1. Introduction
	1.1. How to Build an LFS System
	1.2. What's new since the last release
	1.3. Changelog
	1.4. Resources
	1.4.1. FAQ
	1.4.2. Mailing Lists
	1.4.3. IRC
	1.4.4. Mirror Sites
	1.4.5. Contact Information

	1.5. Help
	1.5.1. Things to Mention
	1.5.2. Configure Script Problems
	1.5.3. Compilation Problems

	Part II. Preparing for the Build
	Chapter 2. Preparing the Host System
	2.1. Introduction
	2.2. Host System Requirements
	2.3. Building LFS in Stages
	2.3.1. Chapters 1-4
	2.3.2. Chapter 5
	2.3.3. Chapters 6-8

	2.4. Creating a New Partition
	2.4.1. Other Partition Issues
	2.4.1.1. The Root Partition
	2.4.1.2. The Swap Partition
	2.4.1.3. The Grub Bios Partition
	2.4.1.4. Convenience Partitions

	2.5. Creating a File System on the Partition
	2.6. Setting The $LFS Variable
	2.7. Mounting the New Partition

	Chapter 3. Packages and Patches
	3.1. Introduction
	3.2. All Packages
	3.3. Needed Patches

	Chapter 4. Final Preparations
	4.1. Introduction
	4.2. Creating the $LFS/tools Directory
	4.3. Adding the LFS User
	4.4. Setting Up the Environment
	4.5. About SBUs
	4.6. About the Test Suites

	Chapter 5. Constructing a Temporary System
	5.1. Introduction
	5.2. Toolchain Technical Notes
	5.3. General Compilation Instructions
	5.4. Binutils-2.27 - Pass 1
	5.4.0.
	5.4.1. Installation of Cross Binutils
	5.4.2.

	5.5. GCC-6.2.0 - Pass 1
	5.5.0.
	5.5.1. Installation of Cross GCC
	5.5.2.

	5.6. Linux-4.7.2 API Headers
	5.6.0.
	5.6.1. Installation of Linux API Headers
	5.6.2.

	5.7. Glibc-2.24
	5.7.0.
	5.7.1. Installation of Glibc
	5.7.2.

	5.8. Libstdc++-6.2.0
	5.8.0.
	5.8.1. Installation of Target Libstdc++
	5.8.2.

	5.9. Binutils-2.27 - Pass 2
	5.9.0.
	5.9.1. Installation of Binutils
	5.9.2.

	5.10. GCC-6.2.0 - Pass 2
	5.10.0.
	5.10.1. Installation of GCC
	5.10.2.

	5.11. Tcl-core-8.6.6
	5.11.0.
	5.11.1. Installation of Tcl-core
	5.11.2. Contents of Tcl-core

	5.12. Expect-5.45
	5.12.0.
	5.12.1. Installation of Expect
	5.12.2. Contents of Expect

	5.13. DejaGNU-1.6
	5.13.0.
	5.13.1. Installation of DejaGNU
	5.13.2. Contents of DejaGNU

	5.14. Check-0.10.0
	5.14.0.
	5.14.1. Installation of Check
	5.14.2. Contents of Check

	5.15. Ncurses-6.0
	5.15.0.
	5.15.1. Installation of Ncurses
	5.15.2.

	5.16. Bash-4.3.30
	5.16.0.
	5.16.1. Installation of Bash
	5.16.2.

	5.17. Bzip2-1.0.6
	5.17.0.
	5.17.1. Installation of Bzip2
	5.17.2.

	5.18. Coreutils-8.25
	5.18.0.
	5.18.1. Installation of Coreutils
	5.18.2.

	5.19. Diffutils-3.5
	5.19.0.
	5.19.1. Installation of Diffutils
	5.19.2.

	5.20. File-5.28
	5.20.0.
	5.20.1. Installation of File
	5.20.2.

	5.21. Findutils-4.6.0
	5.21.0.
	5.21.1. Installation of Findutils
	5.21.2.

	5.22. Gawk-4.1.3
	5.22.0.
	5.22.1. Installation of Gawk
	5.22.2.

	5.23. Gettext-0.19.8.1
	5.23.0.
	5.23.1. Installation of Gettext
	5.23.2.

	5.24. Grep-2.25
	5.24.0.
	5.24.1. Installation of Grep
	5.24.2.

	5.25. Gzip-1.8
	5.25.0.
	5.25.1. Installation of Gzip
	5.25.2.

	5.26. M4-1.4.17
	5.26.0.
	5.26.1. Installation of M4
	5.26.2.

	5.27. Make-4.2.1
	5.27.0.
	5.27.1. Installation of Make
	5.27.2.

	5.28. Patch-2.7.5
	5.28.0.
	5.28.1. Installation of Patch
	5.28.2.

	5.29. Perl-5.24.0
	5.29.0.
	5.29.1. Installation of Perl
	5.29.2.

	5.30. Sed-4.2.2
	5.30.0.
	5.30.1. Installation of Sed
	5.30.2.

	5.31. Tar-1.29
	5.31.0.
	5.31.1. Installation of Tar
	5.31.2.

	5.32. Texinfo-6.1
	5.32.0.
	5.32.1. Installation of Texinfo
	5.32.2.

	5.33. Util-linux-2.28.1
	5.33.0.
	5.33.1. Installation of Util-linux

	5.34. Xz-5.2.2
	5.34.0.
	5.34.1. Installation of Xz
	5.34.2.

	5.35. Stripping
	5.36. Changing Ownership

	Part III. Building the LFS System
	Chapter 6. Installing Basic System Software
	6.1. Introduction
	6.1.1. About libraries

	6.2. Preparing Virtual Kernel File Systems
	6.2.1. Creating Initial Device Nodes
	6.2.2. Mounting and Populating /dev
	6.2.3. Mounting Virtual Kernel File Systems

	6.3. Package Management
	6.3.1. Upgrade Issues
	6.3.2. Package Management Techniques
	6.3.2.1. It is All in My Head!
	6.3.2.2. Install in Separate Directories
	6.3.2.3. Symlink Style Package Management
	6.3.2.4. Timestamp Based
	6.3.2.5. Tracing Installation Scripts
	6.3.2.6. Creating Package Archives
	6.3.2.7. User Based Management

	6.3.3. Deploying LFS on Multiple Systems

	6.4. Entering the Chroot Environment
	6.5. Creating Directories
	6.5.1. FHS Compliance Note

	6.6. Creating Essential Files and Symlinks
	6.7. Linux-4.7.2 API Headers
	6.7.0.
	6.7.1. Installation of Linux API Headers
	6.7.2. Contents of Linux API Headers

	6.8. Man-pages-4.07
	6.8.0.
	6.8.1. Installation of Man-pages
	6.8.2. Contents of Man-pages

	6.9. Glibc-2.24
	6.9.0.
	6.9.1. Installation of Glibc
	6.9.2. Configuring Glibc
	6.9.2.1. Adding nsswitch.conf
	6.9.2.2. Adding time zone data
	6.9.2.3. Configuring the Dynamic Loader

	6.9.3. Contents of Glibc

	6.10. Adjusting the Toolchain
	6.11. Zlib-1.2.8
	6.11.0.
	6.11.1. Installation of Zlib
	6.11.2. Contents of Zlib

	6.12. File-5.28
	6.12.0.
	6.12.1. Installation of File
	6.12.2. Contents of File

	6.13. Binutils-2.27
	6.13.0.
	6.13.1. Installation of Binutils
	6.13.2. Contents of Binutils

	6.14. GMP-6.1.1
	6.14.0.
	6.14.1. Installation of GMP
	6.14.2. Contents of GMP

	6.15. MPFR-3.1.4
	6.15.0.
	6.15.1. Installation of MPFR
	6.15.2. Contents of MPFR

	6.16. MPC-1.0.3
	6.16.0.
	6.16.1. Installation of MPC
	6.16.2. Contents of MPC

	6.17. GCC-6.2.0
	6.17.0.
	6.17.1. Installation of GCC
	6.17.2. Contents of GCC

	6.18. Bzip2-1.0.6
	6.18.0.
	6.18.1. Installation of Bzip2
	6.18.2. Contents of Bzip2

	6.19. Pkg-config-0.29.1
	6.19.0.
	6.19.1. Installation of Pkg-config
	6.19.2. Contents of Pkg-config

	6.20. Ncurses-6.0
	6.20.0.
	6.20.1. Installation of Ncurses
	6.20.2. Contents of Ncurses

	6.21. Attr-2.4.47
	6.21.0.
	6.21.1. Installation of Attr
	6.21.2. Contents of Attr

	6.22. Acl-2.2.52
	6.22.0.
	6.22.1. Installation of Acl
	6.22.2. Contents of Acl

	6.23. Libcap-2.25
	6.23.0.
	6.23.1. Installation of Libcap
	6.23.2. Contents of Libcap

	6.24. Sed-4.2.2
	6.24.0.
	6.24.1. Installation of Sed
	6.24.2. Contents of Sed

	6.25. Shadow-4.2.1
	6.25.0.
	6.25.1. Installation of Shadow
	6.25.2. Configuring Shadow
	6.25.3. Setting the root password
	6.25.4. Contents of Shadow

	6.26. Psmisc-22.21
	6.26.0.
	6.26.1. Installation of Psmisc
	6.26.2. Contents of Psmisc

	6.27. Iana-Etc-2.30
	6.27.0.
	6.27.1. Installation of Iana-Etc
	6.27.2. Contents of Iana-Etc

	6.28. M4-1.4.17
	6.28.0.
	6.28.1. Installation of M4
	6.28.2. Contents of M4

	6.29. Bison-3.0.4
	6.29.0.
	6.29.1. Installation of Bison
	6.29.2. Contents of Bison

	6.30. Flex-2.6.1
	6.30.0.
	6.30.1. Installation of Flex
	6.30.2. Contents of Flex

	6.31. Grep-2.25
	6.31.0.
	6.31.1. Installation of Grep
	6.31.2. Contents of Grep

	6.32. Readline-6.3
	6.32.0.
	6.32.1. Installation of Readline
	6.32.2. Contents of Readline

	6.33. Bash-4.3.30
	6.33.0.
	6.33.1. Installation of Bash
	6.33.2. Contents of Bash

	6.34. Bc-1.06.95
	6.34.0.
	6.34.1. Installation of Bc
	6.34.2. Contents of Bc

	6.35. Libtool-2.4.6
	6.35.0.
	6.35.1. Installation of Libtool
	6.35.2. Contents of Libtool

	6.36. GDBM-1.12
	6.36.0.
	6.36.1. Installation of GDBM
	6.36.2. Contents of GDBM

	6.37. Gperf-3.0.4
	6.37.0.
	6.37.1. Installation of Gperf
	6.37.2. Contents of Gperf

	6.38. Expat-2.2.0
	6.38.0.
	6.38.1. Installation of Expat
	6.38.2. Contents of Expat

	6.39. Inetutils-1.9.4
	6.39.0.
	6.39.1. Installation of Inetutils
	6.39.2. Contents of Inetutils

	6.40. Perl-5.24.0
	6.40.0.
	6.40.1. Installation of Perl
	6.40.2. Contents of Perl

	6.41. XML::Parser-2.44
	6.41.0.
	6.41.1. Installation of XML::Parser
	6.41.2. Contents of XML::Parser

	6.42. Intltool-0.51.0
	6.42.0.
	6.42.1. Installation of Intltool
	6.42.2. Contents of Intltool

	6.43. Autoconf-2.69
	6.43.0.
	6.43.1. Installation of Autoconf
	6.43.2. Contents of Autoconf

	6.44. Automake-1.15
	6.44.0.
	6.44.1. Installation of Automake
	6.44.2. Contents of Automake

	6.45. Xz-5.2.2
	6.45.0.
	6.45.1. Installation of Xz
	6.45.2. Contents of Xz

	6.46. Kmod-23
	6.46.0.
	6.46.1. Installation of Kmod
	6.46.2. Contents of Kmod

	6.47. Gettext-0.19.8.1
	6.47.0.
	6.47.1. Installation of Gettext
	6.47.2. Contents of Gettext

	6.48. Procps-ng-3.3.12
	6.48.0.
	6.48.1. Installation of Procps-ng
	6.48.2. Contents of Procps-ng

	6.49. E2fsprogs-1.43.1
	6.49.0.
	6.49.1. Installation of E2fsprogs
	6.49.2. Contents of E2fsprogs

	6.50. Coreutils-8.25
	6.50.0.
	6.50.1. Installation of Coreutils
	6.50.2. Contents of Coreutils

	6.51. Diffutils-3.5
	6.51.0.
	6.51.1. Installation of Diffutils
	6.51.2. Contents of Diffutils

	6.52. Gawk-4.1.3
	6.52.0.
	6.52.1. Installation of Gawk
	6.52.2. Contents of Gawk

	6.53. Findutils-4.6.0
	6.53.0.
	6.53.1. Installation of Findutils
	6.53.2. Contents of Findutils

	6.54. Groff-1.22.3
	6.54.0.
	6.54.1. Installation of Groff
	6.54.2. Contents of Groff

	6.55. GRUB-2.02~beta3
	6.55.0.
	6.55.1. Installation of GRUB
	6.55.2. Contents of GRUB

	6.56. Less-481
	6.56.0.
	6.56.1. Installation of Less
	6.56.2. Contents of Less

	6.57. Gzip-1.8
	6.57.0.
	6.57.1. Installation of Gzip
	6.57.2. Contents of Gzip

	6.58. IPRoute2-4.7.0
	6.58.0.
	6.58.1. Installation of IPRoute2
	6.58.2. Contents of IPRoute2

	6.59. Kbd-2.0.3
	6.59.0.
	6.59.1. Installation of Kbd
	6.59.2. Contents of Kbd

	6.60. Libpipeline-1.4.1
	6.60.0.
	6.60.1. Installation of Libpipeline
	6.60.2. Contents of Libpipeline

	6.61. Make-4.2.1
	6.61.0.
	6.61.1. Installation of Make
	6.61.2. Contents of Make

	6.62. Patch-2.7.5
	6.62.0.
	6.62.1. Installation of Patch
	6.62.2. Contents of Patch

	6.63. Sysklogd-1.5.1
	6.63.0.
	6.63.1. Installation of Sysklogd
	6.63.2. Configuring Sysklogd
	6.63.3. Contents of Sysklogd

	6.64. Sysvinit-2.88dsf
	6.64.0.
	6.64.1. Installation of Sysvinit
	6.64.2. Contents of Sysvinit

	6.65. Eudev-3.2
	6.65.0.
	6.65.1. Installation of Eudev
	6.65.2. Configuring Eudev
	6.65.3. Contents of Eudev

	6.66. Util-linux-2.28.1
	6.66.0.
	6.66.1. FHS compliance notes
	6.66.2. Installation of Util-linux
	6.66.3. Contents of Util-linux

	6.67. Man-DB-2.7.5
	6.67.0.
	6.67.1. Installation of Man-DB
	6.67.2. Non-English Manual Pages in LFS
	6.67.3. Contents of Man-DB

	6.68. Tar-1.29
	6.68.0.
	6.68.1. Installation of Tar
	6.68.2. Contents of Tar

	6.69. Texinfo-6.1
	6.69.0.
	6.69.1. Installation of Texinfo
	6.69.2. Contents of Texinfo

	6.70. Vim-7.4
	6.70.0.
	6.70.1. Installation of Vim
	6.70.2. Configuring Vim
	6.70.3. Contents of Vim

	6.71. About Debugging Symbols
	6.72. Stripping Again
	6.73. Cleaning Up

	Chapter 7. System Configuration
	7.1. Introduction
	7.1.1. System V

	7.2. LFS-Bootscripts-20150222
	7.2.0.
	7.2.1. Installation of LFS-Bootscripts
	7.2.2. Contents of LFS-Bootscripts

	7.3. Overview of Device and Module Handling
	7.3.1. History
	7.3.2. Udev Implementation
	7.3.2.1. Sysfs
	7.3.2.2. Device Node Creation
	7.3.2.3. Module Loading
	7.3.2.4. Handling Hotpluggable/Dynamic Devices

	7.3.3. Problems with Loading Modules and Creating Devices
	7.3.3.1. A kernel module is not loaded automatically
	7.3.3.2. A kernel module is not loaded automatically, and Udev is not intended to load it
	7.3.3.3. Udev loads some unwanted module
	7.3.3.4. Udev creates a device incorrectly, or makes a wrong symlink
	7.3.3.5. Udev rule works unreliably
	7.3.3.6. Udev does not create a device
	7.3.3.7. Device naming order changes randomly after rebooting

	7.3.4. Useful Reading

	7.4. Managing Devices
	7.4.1. Network Devices
	7.4.1.1. Disabling Persistent Naming on the Kernel Command Line
	7.4.1.2. Creating Custom Udev Rules

	7.4.2. CD-ROM symlinks
	7.4.3. Dealing with duplicate devices

	7.5. General Network Configuration
	7.5.1. Creating Network Interface Configuration Files
	7.5.2. Creating the /etc/resolv.conf File
	7.5.3. Configuring the system hostname
	7.5.4. Customizing the /etc/hosts File

	7.6. System V Bootscript Usage and Configuration
	7.6.1. How Do the System V Bootscripts Work?
	7.6.2. Configuring Sysvinit
	7.6.2.1. Changing Run Levels

	7.6.3. Udev Bootscripts
	7.6.3.1. Module Loading
	7.6.3.2. Handling Hotpluggable/Dynamic Devices

	7.6.4. Configuring the System Clock
	7.6.5. Configuring the Linux Console
	7.6.6. Creating Files at Boot
	7.6.7. Configuring the sysklogd Script
	7.6.8. The rc.site File
	7.6.8.1. Customizing the Boot and Shutdown Scripts

	7.7. The Bash Shell Startup Files
	7.8. Creating the /etc/inputrc File
	7.9. Creating the /etc/shells File

	Chapter 8. Making the LFS System Bootable
	8.1. Introduction
	8.2. Creating the /etc/fstab File
	8.3. Linux-4.7.2
	8.3.0.
	8.3.1. Installation of the kernel
	8.3.2. Configuring Linux Module Load Order
	8.3.3. Contents of Linux

	8.4. Using GRUB to Set Up the Boot Process
	8.4.1. Introduction
	8.4.2. GRUB Naming Conventions
	8.4.3. Setting Up the Configuration
	8.4.4. Creating the GRUB Configuration File

	Chapter 9. The End
	9.1. The End
	9.2. Get Counted
	9.3. Rebooting the System
	9.4. What Now?

	Part IV. Appendices
	Appendix A. Acronyms and Terms
	Appendix B. Acknowledgments
	Appendix C. Dependencies
	Appendix D. Boot and sysconfig scripts version-20150222
	D.1. /etc/rc.d/init.d/rc
	D.2. /lib/lsb/init-functions
	D.3. /etc/rc.d/init.d/mountvirtfs
	D.4. /etc/rc.d/init.d/modules
	D.5. /etc/rc.d/init.d/udev
	D.6. /etc/rc.d/init.d/swap
	D.7. /etc/rc.d/init.d/setclock
	D.8. /etc/rc.d/init.d/checkfs
	D.9. /etc/rc.d/init.d/mountfs
	D.10. /etc/rc.d/init.d/udev_retry
	D.11. /etc/rc.d/init.d/cleanfs
	D.12. /etc/rc.d/init.d/console
	D.13. /etc/rc.d/init.d/localnet
	D.14. /etc/rc.d/init.d/sysctl
	D.15. /etc/rc.d/init.d/sysklogd
	D.16. /etc/rc.d/init.d/network
	D.17. /etc/rc.d/init.d/sendsignals
	D.18. /etc/rc.d/init.d/reboot
	D.19. /etc/rc.d/init.d/halt
	D.20. /etc/rc.d/init.d/template
	D.21. /etc/sysconfig/modules
	D.22. /etc/sysconfig/createfiles
	D.23. /etc/sysconfig/udev-retry
	D.24. /sbin/ifup
	D.25. /sbin/ifdown
	D.26. /lib/services/ipv4-static
	D.27. /lib/services/ipv4-static-route

	Appendix E. Udev configuration rules
	E.1. 55-lfs.rules

	Appendix F. LFS Licenses
	F.1. Creative Commons License
	F.2. The MIT License

	Index

